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Summary – Part 1
• Virtual Memory

• Virtualization makes software development easier 
and enables memory resource utilization better

• Separate address spaces provide protection and 
isolate faults

• Address translation
• Base and bound: very simple but limited
• Segmentation: useful but complex

• Paging
• TLB: fast translation for paging
• VM needs to take care of TLB consistency issues
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Overview

• Part 1: Virtual Memory and Address Translation

• Part 2
• Paging mechanism
• Page replacement algorithms

• Part 3: Design Issues
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Virtual Memory 
Paging

• Simple world
• Load entire process into memory. Run it. Exit.

• Problems
• Slow (especially with big processes)
• Wasteful of space (doesn’t use all of its memory all 

the time)

• Solution
• Demand paging: only bring in pages actually used
• Paging: only keep frequently used pages in memory

• Mechanism:
• Virtual memory maps some to physical pages, some 

to disk
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VM Paging Steps
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Virtual Memory 
Issues

• How to switch a process after a fault?
• Need to save state and resume
• Is it the same as an interrupt?

• What to page in?
• Just the faulting page or more?
• Want to know the future…

• What to replace?
• Cache always too small, which page to replace?
• Want to know the future...
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How Does Page Fault Work?

• User program should not be aware of the 
page fault

• Fault may have happened in the middle of the 
instruction!
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What to Page In?
• Page in the faulting page

• Simplest, but each “page in” has substantial 
overhead

• Page in more pages each time
• May reduce page faults if the additional pages 

are used
• Waste space and time if they are not used
• Real systems do some kind of prefetching

• Applications control what to page in
• Some systems support for user-controlled 

prefetching
• But, many applications do not always know
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VM Page 
Replacement

• Things are not always available when you want them
• No unused page frame is available!
• Need for page replacement

• On a page fault
• If there is an unused frame, get it
• If no unused page frame available,

• Find a used page frame
• If it has been modified, write it to disk
• Invalidate its current PTE and TLB entry

• Load the new page from disk
• Update the faulting PTE and remove its TLB entry
• Restart the faulting instruction

• General data structures
• A list of unused page frames
• A table to map page frames to PID and virtual pages, why?

Page replacement
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Which “Used” Page 
Frame To Replace?

• Random
• Optimal or MIN algorithm
• NRU (Not Recently Used)
• FIFO (First-In-First-Out)
• FIFO with second chance
• Clock
• LRU (Least Recently Used)
• NFU (Not Frequently Used)
• Aging (approximate LRU)
• Working Set
• WSClock
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Optimal or MIN
• Algorithm:

• Replace the page that won’t be used for the longest time
(Know all references in the future)

• Example
• Reference string:
• 4 page frames, 5 virtual pages
• 6 faults

• Pros
• Optimal solution and can be used as an off-line analysis 

method

• Cons
• No on-line implementation
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Revisit TLB and Page 
Table

• Important bits for 
paging
• Reference: Set when 

referencing a 
location in the page

• Modify: Set when 
writing to a location 
in the page
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Not Recently Used 
(NRU)

• Algorithm
• Randomly pick a page from the following (in this order)

• Not referenced and not modified
• Not referenced and modified
• Referenced and not modified
• Referenced and modified

• Clear reference bits
• Example

• 4 page frames
• Reference string
• 8 page faults

• Pros
• Easy to understand and implement

• Cons
• Require scanning through reference bits and modified bits
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First-In-First-Out 
(FIFO)

• Algorithm
• Throw out the oldest page

•  Example
• 4 page frames
• Reference string
• 10 page faults

• Pros
• Low-overhead implementation

• Cons
• May replace heavily used pages => Oldest page may be usefull
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More Frames → Fewer Page 
Faults?

• Consider the following with 4 page frames
• Algorithm: FIFO replacement
• Reference string:
• 10 page faults

• Same string with 3 page frames
• Algorithm: FIFO replacement
• Reference string:
• 9 page faults!

• This is so called “Belady’s anomaly” (Belady, 
Nelson, Shedler 1969)
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FIFO with 2nd 
Chance

• Algorithm
• Check the reference-bit of the oldest page
• If it is 0, then replace it
• If it is 1, clear the referent-bit, put it to the end of the list, and 

continue searching

• Example
• 4 page frames
• Reference string:
• 8 page faults

• Pros
• Simple to implement

• Cons
• Worst case may take a long time
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Clock

• FIFO clock algorithm
• Hand points to the oldest page
• On a page fault, follow the hand to 

inspect pages

• Second chance
• If the reference bit is 1, set it to 0 and 

advance the hand
• If the reference bit is 0, use it for 

replacement

• What if memory is very large
• Take a long time to go around?
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Least Recently Used (LRU)

• Algorithm
• Replace page that hasn’t been used for the longest time

• Order the pages by time of reference
• Timestamp for each referenced page

• Example
• 4 page frames
• Reference string:
• 8 page faults

• Pros
• Good to approximate MIN

• Cons
• Difficult to implement => Update list on every reference
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Approximation of LRU

• Use CPU ticks
• For each 

memory 
reference, store 
the ticks in its 
PTE

• Find the page 
with minimal 
ticks value to 
replace

• Use a smaller 
counter
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Aging: Not Frequently Used 
(NFU)

• Algorithm
• Shift reference bits into 

counters
• Pick the page with the smallest 

counter to replace

• Old example
• 4 page frames
• Reference string:
• 8 page faults

• Main difference between NFU 
and LRU?
• NFU has a short history (counter 

length)
• How many bits are enough?

• In practice 8 bits are quite good
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Program Behavior 
(Denning 1968)

• 80/20 rule
• > 80% memory references are within <20% of 

memory space
• > 80% memory references are made by < 20% 

of code

• Spatial locality
• Neighbors are likely to be accessed

• Temporal locality
• The same page is likely to be accessed again in 

the near future
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Working Set
• Main idea (Denning 1968, 1970)

• Set of pages in the most recent K page references
• Keep the working set in memory will reduce page faults 

significantly

• Approximate working set
• The set of pages of a process used in the last T seconds

• An algorithm
• On a page fault, scan through all pages of the process
• Reference bit = 1 then record the current time for the page
• Reference bit = 0 then check the “time of last use,”

• If the page has not been used within T, replace the page
• Otherwise, go to the next

• Add the faulting page to the working set
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WSClock
• Follow the clock hand
• If the reference bit is 1

• Set reference bit to 0
• Set the current time for the page
• Advance the clock hand

• If the reference bit is 0, check “time of last 
use”
• Used within T, go to the next
• Has not been used within T but modify bit is 1

• Schedule the page for page out and move to next page
• Not been used within T and modify bit is 0

• Replace this page

2
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Replacement 
Algorithms

• The algorithms
• Random
• Optimal or MIN algorithm
• NRU (Not Recently Used)
• FIFO (First-In-First-Out)
• FIFO with second chance
• Clock
• LRU (Least Recently Used)
• NFU (Not Frequently Used)
• Aging (approximate LRU)
• Working Set
• WSClock

2
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Summary of Page Replacement Algorithms

Figure 3-21. Page replacement algorithms discussed in the text.

Tanenbaum & Bo,Modern  Operating Systems:4th ed., (c) 2013 Prentice-Hall, Inc. All rights reserved. 
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Summary – Part 2

• VM Manager page fault handler
• Page Fault Algorithms:

• LRU is good but difficult to implement
• Clock (FIFO with 2nd chance) is considered 

a good practical solution
• Working set concept is important
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Overview
• Part 1:  Virtual Memory and Address Translation

• Part 2: Paging and replacement

• Part 3: Design Issues
• Thrashing and working set
• Backing store
• Simulate certain PTE bits
• Pin/lock pages
• Zero pages
• Shared pages
• Copy-on-write
• Distributed shared memory
• Separation of policy and mechanism
• Virtual memory in Unix and Linux
• Virtual memory in Windows 2000/ XP

3
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Virtual Memory Design 
Implications

• Revisit Design goals
• Protection

• Isolate faults among processes
• Virtualization

• Use disk to extend physical memory
• Make virtualized memory user friendly (from 0 to high address)

• Implications
• TLB overhead and TLB entry management
• Paging between DRAM and disk

•  VM access time
• Access time = h × memory access time + ( 1 - h ) × disk 

access time
• E.g. Suppose memory access time = 100ns, disk access time 

= 10ms
• If h = 90%, VM access time is 1ms!
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Thrashing
• Thrashing

• Paging in and paging out all the time, I/O devices fully 
utilized

• Processes block, waiting for pages to be fetched from 
disk

• Reasons
• Processes require more physical memory than it has
• Does not reuse memory well
• Too many processes, even though they individually fit

• Solution: working set (previous part)
• Pages referenced by a process in the last T seconds
• What if does not fit in memory?
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Working Set: Fit in 
Memory

• Maintain two groups
• Active: working set loaded
• Inactive: working set intentionally not loaded

• Two schedulers
• A short-term scheduler schedules processes
• A long-term scheduler decides which one active 

and which one inactive, such that active working 
sets fits in memory (swapper)

3
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Global vs. Local Page Allocation

• Local Replacement:
• Pros: Do not impact other processes
• Cons: Process cannot use other processes 

used page frame of other processes

• Global Replacement
• Pros: Improve system throughput since 

processes can uses available page frame 
of other processes if needed

• Cons: One processes memory 
management can impact all the others

3
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Backing Store
• Swap space

• When process is created, allocate a swap space for it => 
faster page fault handler

• Have copy executable in swap => no swap out on readonly 
pages

• Need to consider process space growth
• Page creation

• Allocate a disk address? => faster page fault handler
• What if the page never swaps out? or never gets modified?

• Swap out
• Use the same disk address? => direct map between 

memory and disk
• Allocate a new disk address?
• Swap out one or multiple pages?

• Text (code) pages
• They are read only in most cases. Treat them differently?

3
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Example: x86 Paging 
Options

• Flags
• PG flag (Bit 31 of CR0): enable 

page translation
• PSE flag (Bit 4 of CR4): 0 for 

4KB page size and 1 for large 
page size

• PAE flag (Bit 5 of CR4): 0 for 
2MB pages when PSE = 1 and 
1 for 4MB pages when PSE = 1 
extending physical address 
space to 36 bit

• 2MB and 4MB pages are mapped 
directly from directory entries

• 4KB and 4MB pages can be mixed

3
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Example: x86 Directory 
Entry

4
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Pin (or Lock) Page 
Frames

• When do you need it?
• When DMA is in progress, you don’t want to page the 

pages out to avoid CPU from overwriting the pages

• What do we need for the mechanism?
• A data structure to remember all pinned pages
• Paging algorithm checks the data structure to decide 

on page replacement
• Special calls to pin and unpin certain pages

4
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Zero Pages

• Zeroing pages
• Initialize pages with 0’s
• Heap and static data are initialized

• How to implement?
• On the first page fault on a data page or stack 

page, zero it
• Have a special thread zeroing pages

• Can you get away without zeroing pages?

4
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Shared Pages

Two processes sharing two segments, 
TEXT, that will never be written to.

From:   http://www.pearsonhighered.com/samplechapter/0130610143.pdf4
5
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Shared Pages
• PTEs from two processes share the 

same physical pages
• What use cases?

• APIs
• Shared memory calls

• Implementation issues
• Destroy a process with share pages
• Page in, page out shared pages
• Pin and unpin shared pages
• Derive the working set for a process 

with shared pages
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Copy-On-Write
• A technique to avoid prepare all pages to 

run a large process
• Method

• Child’s address space uses the same 
mapping as parent’s

• Make all pages read-only
• Make child process ready
• On a read, nothing happens
• On a write, generates a fault

• map to a new page frame
• copy the page over
• restart the instruction

• Issues
• How to destroy an address space?
• How to page in and page out?
• How to pin and unpin?

4
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Separation of Policy and Mechanism 

Memory management system is divided into three 
parts

1.A low-level MMU handler.
2.A page fault handler that is part of the kernel.
3.An external pager running in user space.
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Separation of Policy and Mechanism

Figure 3-29. Page fault handling with an external pager.
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Virtual Memory in 
BSD4

• Physical memory partition
• Core map (pinned): everything about page frames
• Kernel (pinned): the rest of the kernel memory
• Frames: for user processes

• Page replacement
• Run page daemon until there is enough free pages
• Early BSD used the basic Clock (FIFO with 2nd 

chance)
• Later BSD used Two-handed Clock algorithm
• Swapper runs if page daemon can’t get enough free 

pages
• Looks for processes idling for 20 seconds or more
• 4 largest processes
• Check when a process should be swapped in

5
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Virtual Memory in Linux 
(32-bit)

• Linux address space for 32-bit machines
• 3GB user space
• 1GB kernel (invisible at user level)

• Backing store
• Text segment uses executable binary file as backing storage
• Other segments get backing storage on demand

• Copy-on-write for forking off processes
• Multi-level paging

• Directory, middle (nil for Pentium), page, offset
• Kernel is pinned
• Buddy algorithm with carving slabs for page frame allocation

• Replacement
• Keep certain number of pages free
• Clock algorithm on paging cache and file buffer cache
• Clock algorithm on unused shared pages
• Modified Clock on memory of user processes (most physical pages 

first)
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Virtual Memory in Linux (64 
bits)

Page Global Directory, pgd,
Page Middle Directories, pmdFrom:   http://www.pearsonhighered.com/samplechapter/0130610143.pdf5
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Summary – Part 3

• Must consider many issues
• Global and local replacement strategies
• Management of backing store
• Primitive operations

• Pin/lock pages
• Zero pages
• Shared pages

• Copy-on-write

• Real system designs are complex

6
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