
Virtual Memory,
Address-Translation

and Paging
• INF-2201 Operating Systems Fundamentals – 2023

• Loic Guegan, loic.guegan@uit.no

• Issam RaÏs, issam.rais@uit.no

Based on presentations created by

• Bård Fjukstad, Daniel Stødle And Kai Li and Andy Bavier, Princeton
(http://www.cs.princeton.edu/courses/cos318/)

Tanenbaum & Bo,Modern Operating Systems:4th ed.

Summary – Part 1
• Virtual Memory

• Virtualization makes software development easier
and enables memory resource utilization better

• Separate address spaces provide protection and
isolate faults

• Address translation
• Base and bound: very simple but limited
• Segmentation: useful but complex

• Paging
• TLB: fast translation for paging
• VM needs to take care of TLB consistency issues

2

Overview

• Part 1: Virtual Memory and Address Translation

• Part 2
• Paging mechanism
• Page replacement algorithms

• Part 3: Design Issues

4

Virtual Memory
Paging

• Simple world
• Load entire process into memory. Run it. Exit.

• Problems
• Slow (especially with big processes)
• Wasteful of space (doesn’t use all of its memory all

the time)

• Solution
• Demand paging: only bring in pages actually used
• Paging: only keep frequently used pages in memory

• Mechanism:
• Virtual memory maps some to physical pages, some

to disk

5

VM Paging Steps

9

Virtual Memory
Issues

• How to switch a process after a fault?
• Need to save state and resume
• Is it the same as an interrupt?

• What to page in?
• Just the faulting page or more?
• Want to know the future…

• What to replace?
• Cache always too small, which page to replace?
• Want to know the future...

1
0

How Does Page Fault Work?

• User program should not be aware of the
page fault

• Fault may have happened in the middle of the
instruction!

1
1

What to Page In?
• Page in the faulting page

• Simplest, but each “page in” has substantial
overhead

• Page in more pages each time
• May reduce page faults if the additional pages

are used
• Waste space and time if they are not used
• Real systems do some kind of prefetching

• Applications control what to page in
• Some systems support for user-controlled

prefetching
• But, many applications do not always know

1
2

VM Page
Replacement

• Things are not always available when you want them
• No unused page frame is available!
• Need for page replacement

• On a page fault
• If there is an unused frame, get it
• If no unused page frame available,

• Find a used page frame
• If it has been modified, write it to disk
• Invalidate its current PTE and TLB entry

• Load the new page from disk
• Update the faulting PTE and remove its TLB entry
• Restart the faulting instruction

• General data structures
• A list of unused page frames
• A table to map page frames to PID and virtual pages, why?

Page replacement

1
3

Which “Used” Page
Frame To Replace?

• Random
• Optimal or MIN algorithm
• NRU (Not Recently Used)
• FIFO (First-In-First-Out)
• FIFO with second chance
• Clock
• LRU (Least Recently Used)
• NFU (Not Frequently Used)
• Aging (approximate LRU)
• Working Set
• WSClock

1
4

Optimal or MIN
• Algorithm:

• Replace the page that won’t be used for the longest time
(Know all references in the future)

• Example
• Reference string:
• 4 page frames, 5 virtual pages
• 6 faults

• Pros
• Optimal solution and can be used as an off-line analysis

method

• Cons
• No on-line implementation

1
5

Revisit TLB and Page
Table

• Important bits for
paging
• Reference: Set when

referencing a
location in the page

• Modify: Set when
writing to a location
in the page

1
6

Not Recently Used
(NRU)

• Algorithm
• Randomly pick a page from the following (in this order)

• Not referenced and not modified
• Not referenced and modified
• Referenced and not modified
• Referenced and modified

• Clear reference bits
• Example

• 4 page frames
• Reference string
• 8 page faults

• Pros
• Easy to understand and implement

• Cons
• Require scanning through reference bits and modified bits

1
7

First-In-First-Out
(FIFO)

• Algorithm
• Throw out the oldest page

• Example
• 4 page frames
• Reference string
• 10 page faults

• Pros
• Low-overhead implementation

• Cons
• May replace heavily used pages => Oldest page may be usefull

1
8

More Frames → Fewer Page
Faults?

• Consider the following with 4 page frames
• Algorithm: FIFO replacement
• Reference string:
• 10 page faults

• Same string with 3 page frames
• Algorithm: FIFO replacement
• Reference string:
• 9 page faults!

• This is so called “Belady’s anomaly” (Belady,
Nelson, Shedler 1969)

1
9

FIFO with 2nd
Chance

• Algorithm
• Check the reference-bit of the oldest page
• If it is 0, then replace it
• If it is 1, clear the referent-bit, put it to the end of the list, and

continue searching

• Example
• 4 page frames
• Reference string:
• 8 page faults

• Pros
• Simple to implement

• Cons
• Worst case may take a long time

2
0

Clock

• FIFO clock algorithm
• Hand points to the oldest page
• On a page fault, follow the hand to

inspect pages

• Second chance
• If the reference bit is 1, set it to 0 and

advance the hand
• If the reference bit is 0, use it for

replacement

• What if memory is very large
• Take a long time to go around?

2
1

Least Recently Used (LRU)

• Algorithm
• Replace page that hasn’t been used for the longest time

• Order the pages by time of reference
• Timestamp for each referenced page

• Example
• 4 page frames
• Reference string:
• 8 page faults

• Pros
• Good to approximate MIN

• Cons
• Difficult to implement => Update list on every reference

2
2

Approximation of LRU

• Use CPU ticks
• For each

memory
reference, store
the ticks in its
PTE

• Find the page
with minimal
ticks value to
replace

• Use a smaller
counter

2
3

Aging: Not Frequently Used
(NFU)

• Algorithm
• Shift reference bits into

counters
• Pick the page with the smallest

counter to replace

• Old example
• 4 page frames
• Reference string:
• 8 page faults

• Main difference between NFU
and LRU?
• NFU has a short history (counter

length)
• How many bits are enough?

• In practice 8 bits are quite good

2
4

Program Behavior
(Denning 1968)

• 80/20 rule
• > 80% memory references are within <20% of

memory space
• > 80% memory references are made by < 20%

of code

• Spatial locality
• Neighbors are likely to be accessed

• Temporal locality
• The same page is likely to be accessed again in

the near future

2
5

Working Set
• Main idea (Denning 1968, 1970)

• Set of pages in the most recent K page references
• Keep the working set in memory will reduce page faults

significantly

• Approximate working set
• The set of pages of a process used in the last T seconds

• An algorithm
• On a page fault, scan through all pages of the process
• Reference bit = 1 then record the current time for the page
• Reference bit = 0 then check the “time of last use,”

• If the page has not been used within T, replace the page
• Otherwise, go to the next

• Add the faulting page to the working set

2
6

WSClock
• Follow the clock hand
• If the reference bit is 1

• Set reference bit to 0
• Set the current time for the page
• Advance the clock hand

• If the reference bit is 0, check “time of last
use”
• Used within T, go to the next
• Has not been used within T but modify bit is 1

• Schedule the page for page out and move to next page
• Not been used within T and modify bit is 0

• Replace this page

2
7

Replacement
Algorithms

• The algorithms
• Random
• Optimal or MIN algorithm
• NRU (Not Recently Used)
• FIFO (First-In-First-Out)
• FIFO with second chance
• Clock
• LRU (Least Recently Used)
• NFU (Not Frequently Used)
• Aging (approximate LRU)
• Working Set
• WSClock

2
8

Summary of Page Replacement Algorithms

Figure 3-21. Page replacement algorithms discussed in the text.

Tanenbaum & Bo,Modern Operating Systems:4th ed., (c) 2013 Prentice-Hall, Inc. All rights reserved.

29

Summary – Part 2

• VM Manager page fault handler
• Page Fault Algorithms:

• LRU is good but difficult to implement
• Clock (FIFO with 2nd chance) is considered

a good practical solution
• Working set concept is important

3
0

Overview
• Part 1: Virtual Memory and Address Translation

• Part 2: Paging and replacement

• Part 3: Design Issues
• Thrashing and working set
• Backing store
• Simulate certain PTE bits
• Pin/lock pages
• Zero pages
• Shared pages
• Copy-on-write
• Distributed shared memory
• Separation of policy and mechanism
• Virtual memory in Unix and Linux
• Virtual memory in Windows 2000/ XP

3
2

Virtual Memory Design
Implications

• Revisit Design goals
• Protection

• Isolate faults among processes
• Virtualization

• Use disk to extend physical memory
• Make virtualized memory user friendly (from 0 to high address)

• Implications
• TLB overhead and TLB entry management
• Paging between DRAM and disk

• VM access time
• Access time = h × memory access time + (1 - h) × disk

access time
• E.g. Suppose memory access time = 100ns, disk access time

= 10ms
• If h = 90%, VM access time is 1ms!

3
3

Thrashing
• Thrashing

• Paging in and paging out all the time, I/O devices fully
utilized

• Processes block, waiting for pages to be fetched from
disk

• Reasons
• Processes require more physical memory than it has
• Does not reuse memory well
• Too many processes, even though they individually fit

• Solution: working set (previous part)
• Pages referenced by a process in the last T seconds
• What if does not fit in memory?

3
4

Working Set: Fit in
Memory

• Maintain two groups
• Active: working set loaded
• Inactive: working set intentionally not loaded

• Two schedulers
• A short-term scheduler schedules processes
• A long-term scheduler decides which one active

and which one inactive, such that active working
sets fits in memory (swapper)

3
5

Global vs. Local Page Allocation

• Local Replacement:
• Pros: Do not impact other processes
• Cons: Process cannot use other processes

used page frame of other processes

• Global Replacement
• Pros: Improve system throughput since

processes can uses available page frame
of other processes if needed

• Cons: One processes memory
management can impact all the others

3
6

Backing Store
• Swap space

• When process is created, allocate a swap space for it =>
faster page fault handler

• Have copy executable in swap => no swap out on readonly
pages

• Need to consider process space growth
• Page creation

• Allocate a disk address? => faster page fault handler
• What if the page never swaps out? or never gets modified?

• Swap out
• Use the same disk address? => direct map between

memory and disk
• Allocate a new disk address?
• Swap out one or multiple pages?

• Text (code) pages
• They are read only in most cases. Treat them differently?

3
7

Example: x86 Paging
Options

• Flags
• PG flag (Bit 31 of CR0): enable

page translation
• PSE flag (Bit 4 of CR4): 0 for

4KB page size and 1 for large
page size

• PAE flag (Bit 5 of CR4): 0 for
2MB pages when PSE = 1 and
1 for 4MB pages when PSE = 1
extending physical address
space to 36 bit

• 2MB and 4MB pages are mapped
directly from directory entries

• 4KB and 4MB pages can be mixed

3
9

Example: x86 Directory
Entry

4
0

Pin (or Lock) Page
Frames

• When do you need it?
• When DMA is in progress, you don’t want to page the

pages out to avoid CPU from overwriting the pages

• What do we need for the mechanism?
• A data structure to remember all pinned pages
• Paging algorithm checks the data structure to decide

on page replacement
• Special calls to pin and unpin certain pages

4
3

Zero Pages

• Zeroing pages
• Initialize pages with 0’s
• Heap and static data are initialized

• How to implement?
• On the first page fault on a data page or stack

page, zero it
• Have a special thread zeroing pages

• Can you get away without zeroing pages?

4
4

Shared Pages

Two processes sharing two segments,
TEXT, that will never be written to.

From: http://www.pearsonhighered.com/samplechapter/0130610143.pdf4
5

http://www.pearsonhighered.com/samplechapter/0130610143.pdf

Shared Pages
• PTEs from two processes share the

same physical pages
• What use cases?

• APIs
• Shared memory calls

• Implementation issues
• Destroy a process with share pages
• Page in, page out shared pages
• Pin and unpin shared pages
• Derive the working set for a process

with shared pages

4
6

Copy-On-Write
• A technique to avoid prepare all pages to

run a large process
• Method

• Child’s address space uses the same
mapping as parent’s

• Make all pages read-only
• Make child process ready
• On a read, nothing happens
• On a write, generates a fault

• map to a new page frame
• copy the page over
• restart the instruction

• Issues
• How to destroy an address space?
• How to page in and page out?
• How to pin and unpin?

4
7

Separation of Policy and Mechanism

Memory management system is divided into three
parts

1.A low-level MMU handler.
2.A page fault handler that is part of the kernel.
3.An external pager running in user space.

49

Separation of Policy and Mechanism

Figure 3-29. Page fault handling with an external pager.

50

Virtual Memory in
BSD4

• Physical memory partition
• Core map (pinned): everything about page frames
• Kernel (pinned): the rest of the kernel memory
• Frames: for user processes

• Page replacement
• Run page daemon until there is enough free pages
• Early BSD used the basic Clock (FIFO with 2nd

chance)
• Later BSD used Two-handed Clock algorithm
• Swapper runs if page daemon can’t get enough free

pages
• Looks for processes idling for 20 seconds or more
• 4 largest processes
• Check when a process should be swapped in

5
2

Virtual Memory in Linux
(32-bit)

• Linux address space for 32-bit machines
• 3GB user space
• 1GB kernel (invisible at user level)

• Backing store
• Text segment uses executable binary file as backing storage
• Other segments get backing storage on demand

• Copy-on-write for forking off processes
• Multi-level paging

• Directory, middle (nil for Pentium), page, offset
• Kernel is pinned
• Buddy algorithm with carving slabs for page frame allocation

• Replacement
• Keep certain number of pages free
• Clock algorithm on paging cache and file buffer cache
• Clock algorithm on unused shared pages
• Modified Clock on memory of user processes (most physical pages

first)

5
3

Virtual Memory in Linux (64
bits)

Page Global Directory, pgd,
Page Middle Directories, pmdFrom: http://www.pearsonhighered.com/samplechapter/0130610143.pdf5

4

http://www.pearsonhighered.com/samplechapter/0130610143.pdf

Summary – Part 3

• Must consider many issues
• Global and local replacement strategies
• Management of backing store
• Primitive operations

• Pin/lock pages
• Zero pages
• Shared pages

• Copy-on-write

• Real system designs are complex

6
0

	Slide 1
	Summary – Part 1
	Overview
	Virtual Memory Paging
	VM Paging Steps
	Virtual Memory Issues
	How Does Page Fault Work?
	What to Page In?
	VM Page Replacement
	Which “Used” Page Frame To Replace?
	Optimal or MIN
	Revisit TLB and Page Table
	Not Recently Used (NRU)
	First-In-First-Out (FIFO)
	More Frames → Fewer Page Faults?
	FIFO with 2nd Chance
	Clock
	Least Recently Used (LRU)
	Approximation of LRU
	Aging: Not Frequently Used (NFU)
	Program Behavior (Denning 1968)
	Working Set
	WSClock
	Replacement Algorithms
	Summary of Page Replacement Algorithms
	Summary – Part 2
	Overview
	Virtual Memory Design Implications
	Thrashing
	Working Set: Fit in Memory
	Working Set: Global vs. Local Page Allocation
	Backing Store
	Example: x86 Paging Options
	Example: x86 Directory Entry
	Pin (or Lock) Page Frames
	Zero Pages
	Shared Pages
	Shared Pages
	Copy-On-Write
	Separation of Policy and Mechanism
	Separation of Policy and Mechanism
	Virtual Memory in BSD4
	Virtual Memory in Linux (32-bit)
	Virtual Memory in Linux (64 bits)
	Summary – Part 3

