
File Systems

Inf-2201, University of Tromsø
Loic Guegan (loic.guegan@uit.no)

Based on slides from Lars Ailo Bongo(UiT), Kai Li (Princeton University)

1

Overview
 Part I

 File system abstractions and operations
 Protection
 File system structure

 Disk allocation and i-nodes
 Directory and link implementations
 Physical layout for performance

 Part II
 Performance and reliability

 File buffer cache
 Disk failure and file recovery tools
 Consistent updates
 Transactions and logging

2

Why Files?
 Can’t we just use main memory?
 Can’t we use a mechanism like swapping to

disk?

 Need to store large amount of information
 Need the information to survive process

termination
 Need the information to be shareable by

processes

3

Recall Some High-level Abstractions

 Processes are an abstraction for processors (CPU)

 Virtual memory is an abstraction for memory

 File systems are an abstraction for disks (disk
blocks)

4

5

File System Layers and Abstractions
 Network file system maps a

network file system protocol to
local file systems
 NFS, CIFS, DAFS, GFS, HDFS,

Dropbox, etc
 Local file system implements a

file system on blocks in
volumes
 Local disks or network of disks

 Volume manager maps logical
volume to physical disks
 Provide logical unit
 RAID and reconstruction

 Disk management manages
physical disks
 Sometimes part of volume manager
 Drivers, scheduling, etc

Disk Management

Volume Manager

Local File System

Network File System

6

Volume Manager

 Group multiple disk partitions into a logical disk volume
 No need to deal with physical disk, sector numbers
 To read a block: read(vol#, block#, buf, n);

 Volume can include RAID, tolerating disk failures
 No need to know about parity disk in RAID-5, for example
 No need to know about reconstruction

 Volume can provide error detections at disk block level
 Some products use a checksum block for 8 blocks of data

 Volume can grow or shrink without affecting existing data
 Volume can have remote volumes for disaster recovery
 Remote mirrors can be split or merged for backups

7

Files vs. Block Storage

Disk abstraction
 Block oriented
 Block numbers
 No protection among users of the system
 Data might be corrupted if machine crashes

File abstraction
 Byte oriented
 Named files
 Users protected from each other
 Robust to machine failures

8

File Structure Possibilities
 Byte sequence

 Read or write a number of bytes
 Unstructured or linear
 Unix, Windows

 Record sequence
 Fixed or variable length
 Read or write a number of

records
 Not used: punch card days

 Tree
 Records with keys
 Read, insert, delete a record

(typically using B-tree, sorted on
key)

 Used in mainframes for
commercial data processing

…

… … …

10

File Types, examples
 ASCII
 Binary data

 Record
 Tree
 An Unix executable file

 header: magic number, sizes, entry point, flags
 text
 data
 relocation bits
 symbol table

 Devices
 Everything else in the system

11

Most common file operations
 Operations for “sequence of bytes” files

 Create: create a mapping from a name to bytes
 Delete: delete the mapping
 Open: authentication, bring key attributes, disk info

into RAM
 Close: free up table space, force last block write
 Seek: jump to a particular location in a file
 Read: read some bytes from a file
 Write: write some bytes to a file
 Get attributes, Set attributes

 Implementation goal
 Operations should have as few disk accesses as

possible and have minimal space overhead

12

Access Patterns
 Sequential (the common pattern)

 File data processed sequentially
 Examples

 Editor writes out a new file
 Compiler reads a file

 Random access
 Address a block in file directly without passing through

predecessors
 Examples:

 Data set for demand paging
 Databases

 Keyed access
 Search for a record with particular values
 Usually not provided by today’s file systems
 Examples

 Database search and indexing

File System Components
 Naming

 File and directory naming
 Local and remote

operations
 File access

 Implement read/write and
other functionalities

 Buffer cache
 Reduce client/server disk

I/Os
 Disk allocation

 File data layout
 Mapping files to disk blocks

 Management
 Tools for system

administrators to manage
file systems

15

Steps to Open a file
 File name lookup and authenticate
 Copy the file descriptors into the in-memory data structure, if it is

not in yet
 Create an entry in the open file table (system wide) if there isn’t one
 Create an entry in PCB
 Link up the data structures
 Return a pointer to user

16

File Read and Write
 Read 10 bytes from a file starting at byte 2?

 seek byte 2
 fetch the block
 read 10 bytes

 Write 10 bytes to a file starting at byte 2?
 seek byte 2
 fetch the block
 write 10 bytes in memory
 write out the block

17

Disk Layout

 Boot block
 Code to bootstrap the operating system

 Super-block defines a file system
 Size of the file system
 Size of the file descriptor area
 Free list pointer, or pointer to bitmap
 Location of the file descriptor of the root directory
 Other meta-data such as permission and various times
 Kernel keeps in main memory, replicated on disk

 File descriptors
 File data blocks

 Data for the files, the largest portion on disk

18

Data Structures for Disk Allocation
 The goal is to manage

the allocation of a
volume

 A file header for each file
 Disk blocks associated

with each file
 A data structure to

represent free space on
disk
 Bit map that uses 1 bit

per block (sector)
 Linked list that chains

free blocks together
 …

19

Contiguous Allocation
 Request in advance for the size of the file
 Search bit map or linked list to locate a space
 File header

 First block in file
 Number of blocks

 Pros
 Fast sequential access
 Easy random access

 Cons
 External fragmentation (what if file C needs 3 blocks)
 Hard to grow files: may have to move (large) files on disk
 May need compaction

20

Linked Files
 File header points to 1st

block on disk
 A block points to the next
 Pros

 Can grow files
dynamically

 Free list is similar to a file
 No external

fragmentation or need to
move files

 Cons
 Random access: horrible
 Even sequential access

needs one seek per block
 Unreliable: losing a block

means losing the rest

21

File Allocation Table (FAT)
 Approach

 Table of “next pointers”, indexed by block
 Instead of pointer stored with block

 Directory entry points to 1st block of file
 Pros

 No need to traverse list to find a block
 Cache FAT table and traverse in memory

 Cons
 FAT table takes lots of space for large disk

 Hard to fit in memory; so may need seeks
 Pointers for all files on whole disk are

interspersed in FAT table
 Need full table in memory, even for one file
 Solution: indexed files

 Keep block lists for different files together,
and in different parts of disk

22

Single-Level Indexed Files
 A file header holds an

array of pointers to point
to disk blocks

 Pros
 Can grow up to a limit
 Random access is fast

 Cons
 Clumsy to grow beyond

the limit
 Still lots of seeks

23

Multi-Level Indexed Files (Unix)
 13 Pointers in a

header
 1…10: direct pointers
 11: 1-level indirect
 12: 2-level indirect
 13: 3-level indirect

 Pros & Cons
 In favor of small files
 Can grow
 Limit is 16G and lots

of seek

25

What’s in Original Unix i-node?
 Mode: file type, protection bits, setuid, setgid bits
 Link count: number of directory entries pointing to

this
 Uid: uid of the file owner
 Gid: gid of the file owner
 File size
 Times (access, modify, change)
 No filename (why?)
 10 pointers to data blocks
 Single indirect pointer
 Double indirect pointer
 Triple indirect pointer

26

Extents
 Instead of using a

fixed size block, use
a number of blocks
 XFS uses 8Kbyte block
 Max extent size is 2M

blocks
 Index nodes need to

have
 Block offset
 Length
 Starting block

27

Directory Organization Examples
 Flat

 All files are in one directory
 Hierarchical (Unix)

 /home/foo/bar
 Directory is stored in a file containing (name, i-

node) pairs
 The name can be either a file or a directory

29

Mapping File Names to i-nodes
 Create/delete

 Create/delete a directory
 Open/close

 Open/close a directory for read and write
 Link/unlink

 Link/unlink a file
 Rename

 Rename the directory

30

Linear List
 Method

 <FileName, i-node> pairs
are linearly stored in a file

 Create a file
 Append <FileName, i-node>

 Delete a file
 Search for FileName
 Remove its pair from the

directory
 Compact by moving the rest

 Pros
 Space efficient

 Cons
 Linear search
 Need to deal with

fragmentation

 /home/userY/foo/
bar/…
veryLongFileName

<foo,1234>
<bar,1235> …
<veryLongFileName,
4567>

31

Tree Data Structure
 Method

 Store <fileName, i-node> a
tree data structure such as B-
tree

 Create/delete/search in the
tree data structure

 Pros
 Good for a large number of

files
 Cons

 Inefficient for a small number
of files

 More space
 Complex

32

Hashing
 Method

 Use a hash table to map
FileName to i-node

 Space for name and
metadata is variable
sized

 Create/delete will trigger
space allocation and free

 Pros
 Fast searching and

relatively simple
 Cons

 Not as efficient as trees
for very large directory
(wasting space for the
hash table)

33

Disk I/Os to Read/Write A File
 Disk I/Os to access a byte of /home/foo/bar

 Read the i-node and first data block of “/”
 Read the i-node and first data block of “home”
 Read the i-node and first data block of “foo”
 Read the i-node and first data block of “bar”

 Disk I/Os to write a file
 Read the i-node of the directory and the directory file.
 Read or create the i-node of the file
 Read or create the file itself
 Write back the directory and the file

 Too many I/Os to traverse the directory
 Solution is to use Current Working Directory

34

Links
 Symbolic (soft) links

 A symbolic link is just the name of the file
 Original owner still owns the file, deleted on rm by

owner
 Use a new i-node for the symbolic link

ln –s source target
 Hard links

 A link to a file with the same i-node
ln source target

 Delete may or may not remove the target
depending on whether it is the last one (link
reference count)

35

Original Unix File System
 Simple disk layout

 Block size is sector size (512 bytes)
 i-nodes are on outermost cylinders
 Data blocks are on inner cylinders
 Use linked list for free blocks

 Issues
 Index is large
 Fixed max number of files
 i-nodes far from data blocks
 i-nodes for directory not close

together
 Consecutive blocks can be

anywhere
 Poor bandwidth (20Kbytes/sec

even for sequential access!)

36

BSD FFS (Fast File System)
 Use a larger block

size: 4KB or 8KB
 Allow large blocks to

be chopped into
fragments

 Use bitmap instead
of a free list
 Try to allocate

contiguously
 10% reserved disk

space

37

FFS Disk Layout
 i-nodes are grouped

together
 A portion of the i-node

array on each cylinder
 Do you ever read i-

nodes without reading
any file blocks?

 Overcome rotational
delays
 Skip sector positioning

to avoid the context
switch delay

 Read ahead: read next
block right after the first

38

What Has FFS Achieved?
 Performance improvements

 20-40% of disk bandwidth for large files (10-20x
original)

 Better small file performance
 We can still do a lot better

 Extent based instead of block based
 Use a pointer and size for all contiguous blocks (XFS,

Veritas file system, etc)
 Synchronous metadata writes hurt small file

performance
 Asynchronous writes with certain ordering (“soft updates”)
 Logging (talk about this later)
 Play with semantics (/tmp file systems)

39

40

Side note : Protection Policy vs.
Mechanism

 A protection system is the mechanism to
enforce a security policy
 Roughly the same set of choices, no matter what

policy
 A security policy determines what is

acceptable or not
 Example security policies:

 Each user can only allocate 40GB of disk
 No one but root can write to the password file
 You cannot read my mail

41

Protection Mechanisms
 Authentication

 Make sure system knows whom it is talking to
 Unix: password
 US banks: account # + last transactions
 Bars: driver’s license

 Authorization
 Determine if “X” is allowed to do “Y”
 Need a simple database

 Access enforcement
 Enforce authorization decision
 Must make sure there are no loopholes
 Hard to assert

43

Protection Domain
 A set of (objects, rights) pairs

 Domain may correspond to single user, or more general
 Process runs in a domain at a given instant in time

 Once identity known, what is Bob allowed to do?
 More generally: must be able to determine what each

“principal” is allowed to do with what
 Can be represented as a “protection matrix” with

one row per domain, one column per resource
 What are the pros and cons of this approach?

File A Printer B File C

Domain 1 R W RW

Domain 2 RW W …

Domain 3 R … RW

44

Access Control Lists (ACLs)
 By column: For each object, indicate which

users are allowed to perform which operations
 In most general form, each object has a list of

<user,privileged> pairs
 Access control lists are simple, and are used

in almost all file systems
 Owner, group, world

 Implementation
 Stores ACLs in each file
 Use login authentication to identify
 Kernel implements ACLs

45

Capabilities
 By rows: For each user, indicate which files may be

accessed and in what ways
 Store a lists of <object, privilege> pairs for each user.

 Called a Capability List
 Capabilities frequently do both naming and protection

 Can only “see” an object if you have a capability for it.
 Default is no access

 Implementation
 Capability lists

 Architecture support
 Stored in the kernel
 Stored in the user space but in encrypted format

 Checking is easy: no enumeration

46

Access Enforcement
 Use a trusted party to

 Enforce access controls
 Protect authorization information

 Kernel is the trusted party
 This part of the system can do anything it wants
 If it has a bug, the entire system can be destroyed
 Want it to be as small & simple as possible

 Security is only as strong as the weakest link
in the protection system

Summary - Part 1
 Protection

 We basically live with access control list
 More protection is needed in the future

 File system structure
 Boot block, super block, file metadata, file data

 File metadata
 Consider efficiency, space and fragmentation

 Directories
 Consider the number of files

 Links
 Soft vs. hard

 Physical layout
 Where to put metadata and data

49

Overview
 Part I

 File system abstractions and operations
 Protection
 File system structure

 Disk allocation and i-nodes
 Directory and link implementations
 Physical layout for performance

 Part II
 Performance and reliability

 File buffer cache
 Disk failure and file recovery tools
 Consistent updates
 Transactions and logging

50

File Buffer Cache for Performance
 Cache files in main

memory
 Check the buffer cache

first
 Hit will read from or

write to the buffer cache
 Miss will read from the

disk to the buffer cache
 Usual questions

 What to cache?
 How to size?
 What to prefetch?
 How and what to

replace?
 Which write policies?

51

What to Cache?
 Things to consider

 I-nodes and indirect blocks of directories
 Directory files
 I-nodes and indirect blocks of files
 Files

 What is a good strategy?
 Cache i-nodes and indirect blocks if they are in

use?
 Cache only the i-nodes and indirect blocks of the

current directory?
 Cache an entire file vs. referenced blocks of files?

52

How to Size?
 An important issue is how to partition memory

between the buffer cache and VM cache
 Early systems use fixed-size buffer cache

 It does not adapt to workloads
 Later systems use variable size cache

 But, large files are common, how do we make adjustment?
 Basically, we solve the problem using the working set

idea

53

Challenges: Multiple User Processes
 Kernel

 All processes share the
same buffer cache

 Global LRU may not be
fair

 Solution
 Working set idea again

 Questions
 Can each process use a

different replacement
strategy?

 Can we move the buffer
cache to the user level?

 What about duplicates?

54

What to Prefetch?
 Optimal

 The blocks are fetched in just enough time to use
them

 But, too hard to do
 The good news is that files also have locality

 Temporal locality
 Spatial locality

 Common strategies
 Prefetch next k blocks together (typically > 64KB)
 Some discard unreferenced blocks
 Cluster blocks of the same directory and i-nodes if

possible (to the same cylinder group and
neighborhood) to make prefetching efficient

55

How and What to Replace?
 Page replacement theory

 Use past to predict future
 LRU is good

 Buffer cache with LRU
replacement mechanism
 If b is in buffer cache,

move it to front and
return b

 Otherwise, replace the
tail block, get b from
disk, insert b to the front

 Use double linked list
with a hash table

56

Which Write Policies?
 Write through

 Whenever modify cached
block, write block to disk

 Cache is always
consistent

 Simple, but cause more
I/Os

 Write back
 When modifying a block,

mark it as dirty & write
to disk later

 Fast writes, absorbs
writes, and enables
batching

 So, what’s the problem?

57

Write Back Complications
 Fundamental tension

 On crash, all modified data in cache is lost.
 The longer you postpone write backs, the faster

you are but the worst the damage is on a crash
 When to write back

 When a block is evicted
 When a file is closed
 On an explicit flush
 When a time interval elapses (30 seconds in Unix)

 Issues
 These write back options have no guarantees
 A solution is consistent updates (later)

58

File Recovery Tools
 Physical backup (dump) and recovery

 Dump disk blocks by blocks to a backup system
 Backup only changed blocks since the last

backup as an incremental
 Recovery tool built accordingly

 Logical backup (dump) and recovery
 Traverse the logical structure from the root
 Selectively dump what you want to backup
 Verify logical structures as you backup
 Recovery tool selectively move files back

 Consistency check (e.g. fsck)
 Start from the root i-node
 Traverse the whole tree and mark reachable

files
 Verify the logical structure
 Figure out what blocks are free

59

What fsck does
 Get default list of file systems to check from /etc/fstab
 Inconsistencies checked:

 Blocks claimed by more than one i-node or the free map
 Blocks claimed by an i-node outside range of the filesystem
 Incorrect link counts
 Size checks (directory size etc)
 Bad i-node format
 Blocks not accounted anywhere
 Directory checks:

 File pointing to unallocated i-node; I-node number out of range; .
or .. Not first two entries of a directory or have wrong i-node
number

 Super Block checks
 More blocks for i-nodes than are in the filesystem; Bad free block

map format; Total free block and/or free i-node count incorrect
 Put orphaned files and directories in lost+found directory

60

Recovery from Disk Block Failures
 Boot block

 Create a utility to replace
the boot block

 Use a flash memory to
duplicate the boot block
and kernel

 Super block
 If there is a duplicate,

remake file system
 Free block data structure

 Search all reachable files
from the root

 Unreachable blocks are
free

 i-node blocks
 Indirect or data blocks

61

Persistency and Crashes
 File system promise:

Persistency
 File system will hold a file until

its owner explicitly deletes it
 Why is this hard?

 A crash will destroy memory
content

 Cache more ⇒ better
performance

 Cache more ⇒ lose more on a
crash

 A file operation often requires
modifying multiple blocks, but
the system can only atomically
modify one at a time

 Systems can crash anytime

62

What is a Crash?
 Crash is like a context

switch
 Think about a file system

as a thread before the
context switch and another
after the context switch

 Two threads read or write
same shared state?

 Crash is like time travel
 Current volatile state lost;

suddenly go back to old
state

 Example: move a file
 Place it in a directory
 Delete it from old
 Crash happens and both

directories have problems

63

Approaches
 Throw everything away and start over

 Done for most things (e.g., make again)
 Reconstruction

 Figure out where you are and make the file system
consistent and go from there

 Try to fix things after a crash (“fsck”)
 Make updates consistent

 Either new data or old data, but not garbage data
 Make multiple updates appear atomic

 Build arbitrary sized atomic units from smaller
atomic ones

 Similar to how we built critical sections
64

65

66

Consistent Updates: Bottom-Up Order
 The general approach is to use a “bottom up” order

 File data blocks, file i-node, directory file, directory i-
node, …

 What about file buffer cache?
 Write back all data blocks
 Update file i-node and write it to disk
 Update directory file and write it to disk
 Update directory i-node and write it to disk (if necessary)
 Continue until no directory update exists

 Does this solve the write back problem?
 Updates are consistent but leave garbage blocks around
 May need to run fsck to clean up once a while
 Ideal approach: consistent update without leaving

garbage
67

Operations as transactions in FileSys
 Make a file operation a transaction

 Create a file
 Move a file
 Write a chunk of data
 …

 Make arbitrary number of file operations a
transaction
 Just keep logging but make sure that things are

idempotent: making a very long transaction
 Recovery by replaying the log and correct the file system
 This is called logging file system or journaling file system
 Almost all new file systems are journaling (Windows

NTFS, Veritas file system, file systems on Linux)

78

Log Management
 How big is the log? Same size as the file system?
 Observation

 Log what’s needed for crash recovery
 Management method

 Checkpoint operation: flush the buffer cache to disk
 After a checkpoint, we can truncate log and start

again
 Log needs to be big enough to hold changes in

memory
 Some logging file systems log only metadata

(file descriptors and directories) and not file data
to keep log size down

80

Log-structured File System (LFS)
 Structure the entire file system as a log with

segments
 A segment has i-nodes, indirect blocks, and

data blocks
 All writes are sequential (no seeks)
 There will be holes when deleting files

82

Summary – Part 2
 File buffer cache

 True LRU is possible
 Simple write back is vulnerable to crashes

 Disk block failures and file system recovery
tools
 Individual recovery tools
 Top down traversal tools

 Logging file systems

83

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10
	Slide 11
	Slide 12
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 25
	Slide 26
	Slide 27
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 78
	Slide 80
	Slide 82
	Slide 83

