
File Systems

Inf-2201, University of Tromsø
Loic Guegan (loic.guegan@uit.no)

Based on slides from Lars Ailo Bongo(UiT), Kai Li (Princeton University)

1

Overview
 Part I

 File system abstractions and operations
 Protection
 File system structure

 Disk allocation and i-nodes
 Directory and link implementations
 Physical layout for performance

 Part II
 Performance and reliability

 File buffer cache
 Disk failure and file recovery tools
 Consistent updates
 Transactions and logging

2

Why Files?
 Can’t we just use main memory?
 Can’t we use a mechanism like swapping to

disk?

 Need to store large amount of information
 Need the information to survive process

termination
 Need the information to be shareable by

processes

3

Recall Some High-level Abstractions

 Processes are an abstraction for processors (CPU)

 Virtual memory is an abstraction for memory

 File systems are an abstraction for disks (disk
blocks)

4

5

File System Layers and Abstractions
 Network file system maps a

network file system protocol to
local file systems
 NFS, CIFS, DAFS, GFS, HDFS,

Dropbox, etc
 Local file system implements a

file system on blocks in
volumes
 Local disks or network of disks

 Volume manager maps logical
volume to physical disks
 Provide logical unit
 RAID and reconstruction

 Disk management manages
physical disks
 Sometimes part of volume manager
 Drivers, scheduling, etc

Disk Management

Volume Manager

Local File System

Network File System

6

Volume Manager

 Group multiple disk partitions into a logical disk volume
 No need to deal with physical disk, sector numbers
 To read a block: read(vol#, block#, buf, n);

 Volume can include RAID, tolerating disk failures
 No need to know about parity disk in RAID-5, for example
 No need to know about reconstruction

 Volume can provide error detections at disk block level
 Some products use a checksum block for 8 blocks of data

 Volume can grow or shrink without affecting existing data
 Volume can have remote volumes for disaster recovery
 Remote mirrors can be split or merged for backups

7

Files vs. Block Storage

Disk abstraction
 Block oriented
 Block numbers
 No protection among users of the system
 Data might be corrupted if machine crashes

File abstraction
 Byte oriented
 Named files
 Users protected from each other
 Robust to machine failures

8

File Structure Possibilities
 Byte sequence

 Read or write a number of bytes
 Unstructured or linear
 Unix, Windows

 Record sequence
 Fixed or variable length
 Read or write a number of

records
 Not used: punch card days

 Tree
 Records with keys
 Read, insert, delete a record

(typically using B-tree, sorted on
key)

 Used in mainframes for
commercial data processing

…

… … …

10

File Types, examples
 ASCII
 Binary data

 Record
 Tree
 An Unix executable file

 header: magic number, sizes, entry point, flags
 text
 data
 relocation bits
 symbol table

 Devices
 Everything else in the system

11

Most common file operations
 Operations for “sequence of bytes” files

 Create: create a mapping from a name to bytes
 Delete: delete the mapping
 Open: authentication, bring key attributes, disk info

into RAM
 Close: free up table space, force last block write
 Seek: jump to a particular location in a file
 Read: read some bytes from a file
 Write: write some bytes to a file
 Get attributes, Set attributes

 Implementation goal
 Operations should have as few disk accesses as

possible and have minimal space overhead

12

Access Patterns
 Sequential (the common pattern)

 File data processed sequentially
 Examples

 Editor writes out a new file
 Compiler reads a file

 Random access
 Address a block in file directly without passing through

predecessors
 Examples:

 Data set for demand paging
 Databases

 Keyed access
 Search for a record with particular values
 Usually not provided by today’s file systems
 Examples

 Database search and indexing

File System Components
 Naming

 File and directory naming
 Local and remote

operations
 File access

 Implement read/write and
other functionalities

 Buffer cache
 Reduce client/server disk

I/Os
 Disk allocation

 File data layout
 Mapping files to disk blocks

 Management
 Tools for system

administrators to manage
file systems

15

Steps to Open a file
 File name lookup and authenticate
 Copy the file descriptors into the in-memory data structure, if it is

not in yet
 Create an entry in the open file table (system wide) if there isn’t one
 Create an entry in PCB
 Link up the data structures
 Return a pointer to user

16

File Read and Write
 Read 10 bytes from a file starting at byte 2?

 seek byte 2
 fetch the block
 read 10 bytes

 Write 10 bytes to a file starting at byte 2?
 seek byte 2
 fetch the block
 write 10 bytes in memory
 write out the block

17

Disk Layout

 Boot block
 Code to bootstrap the operating system

 Super-block defines a file system
 Size of the file system
 Size of the file descriptor area
 Free list pointer, or pointer to bitmap
 Location of the file descriptor of the root directory
 Other meta-data such as permission and various times
 Kernel keeps in main memory, replicated on disk

 File descriptors
 File data blocks

 Data for the files, the largest portion on disk

18

Data Structures for Disk Allocation
 The goal is to manage

the allocation of a
volume

 A file header for each file
 Disk blocks associated

with each file
 A data structure to

represent free space on
disk
 Bit map that uses 1 bit

per block (sector)
 Linked list that chains

free blocks together
 …

19

Contiguous Allocation
 Request in advance for the size of the file
 Search bit map or linked list to locate a space
 File header

 First block in file
 Number of blocks

 Pros
 Fast sequential access
 Easy random access

 Cons
 External fragmentation (what if file C needs 3 blocks)
 Hard to grow files: may have to move (large) files on disk
 May need compaction

20

Linked Files
 File header points to 1st

block on disk
 A block points to the next
 Pros

 Can grow files
dynamically

 Free list is similar to a file
 No external

fragmentation or need to
move files

 Cons
 Random access: horrible
 Even sequential access

needs one seek per block
 Unreliable: losing a block

means losing the rest

21

File Allocation Table (FAT)
 Approach

 Table of “next pointers”, indexed by block
 Instead of pointer stored with block

 Directory entry points to 1st block of file
 Pros

 No need to traverse list to find a block
 Cache FAT table and traverse in memory

 Cons
 FAT table takes lots of space for large disk

 Hard to fit in memory; so may need seeks
 Pointers for all files on whole disk are

interspersed in FAT table
 Need full table in memory, even for one file
 Solution: indexed files

 Keep block lists for different files together,
and in different parts of disk

22

Single-Level Indexed Files
 A file header holds an

array of pointers to point
to disk blocks

 Pros
 Can grow up to a limit
 Random access is fast

 Cons
 Clumsy to grow beyond

the limit
 Still lots of seeks

23

Multi-Level Indexed Files (Unix)
 13 Pointers in a

header
 1…10: direct pointers
 11: 1-level indirect
 12: 2-level indirect
 13: 3-level indirect

 Pros & Cons
 In favor of small files
 Can grow
 Limit is 16G and lots

of seek

25

What’s in Original Unix i-node?
 Mode: file type, protection bits, setuid, setgid bits
 Link count: number of directory entries pointing to

this
 Uid: uid of the file owner
 Gid: gid of the file owner
 File size
 Times (access, modify, change)
 No filename (why?)
 10 pointers to data blocks
 Single indirect pointer
 Double indirect pointer
 Triple indirect pointer

26

Extents
 Instead of using a

fixed size block, use
a number of blocks
 XFS uses 8Kbyte block
 Max extent size is 2M

blocks
 Index nodes need to

have
 Block offset
 Length
 Starting block

27

Directory Organization Examples
 Flat

 All files are in one directory
 Hierarchical (Unix)

 /home/foo/bar
 Directory is stored in a file containing (name, i-

node) pairs
 The name can be either a file or a directory

29

Mapping File Names to i-nodes
 Create/delete

 Create/delete a directory
 Open/close

 Open/close a directory for read and write
 Link/unlink

 Link/unlink a file
 Rename

 Rename the directory

30

Linear List
 Method

 <FileName, i-node> pairs
are linearly stored in a file

 Create a file
 Append <FileName, i-node>

 Delete a file
 Search for FileName
 Remove its pair from the

directory
 Compact by moving the rest

 Pros
 Space efficient

 Cons
 Linear search
 Need to deal with

fragmentation

 /home/userY/foo/
bar/…
veryLongFileName

<foo,1234>
<bar,1235> …
<veryLongFileName,
4567>

31

Tree Data Structure
 Method

 Store <fileName, i-node> a
tree data structure such as B-
tree

 Create/delete/search in the
tree data structure

 Pros
 Good for a large number of

files
 Cons

 Inefficient for a small number
of files

 More space
 Complex

32

Hashing
 Method

 Use a hash table to map
FileName to i-node

 Space for name and
metadata is variable
sized

 Create/delete will trigger
space allocation and free

 Pros
 Fast searching and

relatively simple
 Cons

 Not as efficient as trees
for very large directory
(wasting space for the
hash table)

33

Disk I/Os to Read/Write A File
 Disk I/Os to access a byte of /home/foo/bar

 Read the i-node and first data block of “/”
 Read the i-node and first data block of “home”
 Read the i-node and first data block of “foo”
 Read the i-node and first data block of “bar”

 Disk I/Os to write a file
 Read the i-node of the directory and the directory file.
 Read or create the i-node of the file
 Read or create the file itself
 Write back the directory and the file

 Too many I/Os to traverse the directory
 Solution is to use Current Working Directory

34

Links
 Symbolic (soft) links

 A symbolic link is just the name of the file
 Original owner still owns the file, deleted on rm by

owner
 Use a new i-node for the symbolic link

ln –s source target
 Hard links

 A link to a file with the same i-node
ln source target

 Delete may or may not remove the target
depending on whether it is the last one (link
reference count)

35

Original Unix File System
 Simple disk layout

 Block size is sector size (512 bytes)
 i-nodes are on outermost cylinders
 Data blocks are on inner cylinders
 Use linked list for free blocks

 Issues
 Index is large
 Fixed max number of files
 i-nodes far from data blocks
 i-nodes for directory not close

together
 Consecutive blocks can be

anywhere
 Poor bandwidth (20Kbytes/sec

even for sequential access!)

36

BSD FFS (Fast File System)
 Use a larger block

size: 4KB or 8KB
 Allow large blocks to

be chopped into
fragments

 Use bitmap instead
of a free list
 Try to allocate

contiguously
 10% reserved disk

space

37

FFS Disk Layout
 i-nodes are grouped

together
 A portion of the i-node

array on each cylinder
 Do you ever read i-

nodes without reading
any file blocks?

 Overcome rotational
delays
 Skip sector positioning

to avoid the context
switch delay

 Read ahead: read next
block right after the first

38

What Has FFS Achieved?
 Performance improvements

 20-40% of disk bandwidth for large files (10-20x
original)

 Better small file performance
 We can still do a lot better

 Extent based instead of block based
 Use a pointer and size for all contiguous blocks (XFS,

Veritas file system, etc)
 Synchronous metadata writes hurt small file

performance
 Asynchronous writes with certain ordering (“soft updates”)
 Logging (talk about this later)
 Play with semantics (/tmp file systems)

39

40

Side note : Protection Policy vs.
Mechanism

 A protection system is the mechanism to
enforce a security policy
 Roughly the same set of choices, no matter what

policy
 A security policy determines what is

acceptable or not
 Example security policies:

 Each user can only allocate 40GB of disk
 No one but root can write to the password file
 You cannot read my mail

41

Protection Mechanisms
 Authentication

 Make sure system knows whom it is talking to
 Unix: password
 US banks: account # + last transactions
 Bars: driver’s license

 Authorization
 Determine if “X” is allowed to do “Y”
 Need a simple database

 Access enforcement
 Enforce authorization decision
 Must make sure there are no loopholes
 Hard to assert

43

Protection Domain
 A set of (objects, rights) pairs

 Domain may correspond to single user, or more general
 Process runs in a domain at a given instant in time

 Once identity known, what is Bob allowed to do?
 More generally: must be able to determine what each

“principal” is allowed to do with what
 Can be represented as a “protection matrix” with

one row per domain, one column per resource
 What are the pros and cons of this approach?

File A Printer B File C

Domain 1 R W RW

Domain 2 RW W …

Domain 3 R … RW

44

Access Control Lists (ACLs)
 By column: For each object, indicate which

users are allowed to perform which operations
 In most general form, each object has a list of

<user,privileged> pairs
 Access control lists are simple, and are used

in almost all file systems
 Owner, group, world

 Implementation
 Stores ACLs in each file
 Use login authentication to identify
 Kernel implements ACLs

45

Capabilities
 By rows: For each user, indicate which files may be

accessed and in what ways
 Store a lists of <object, privilege> pairs for each user.

 Called a Capability List
 Capabilities frequently do both naming and protection

 Can only “see” an object if you have a capability for it.
 Default is no access

 Implementation
 Capability lists

 Architecture support
 Stored in the kernel
 Stored in the user space but in encrypted format

 Checking is easy: no enumeration

46

Access Enforcement
 Use a trusted party to

 Enforce access controls
 Protect authorization information

 Kernel is the trusted party
 This part of the system can do anything it wants
 If it has a bug, the entire system can be destroyed
 Want it to be as small & simple as possible

 Security is only as strong as the weakest link
in the protection system

Summary - Part 1
 Protection

 We basically live with access control list
 More protection is needed in the future

 File system structure
 Boot block, super block, file metadata, file data

 File metadata
 Consider efficiency, space and fragmentation

 Directories
 Consider the number of files

 Links
 Soft vs. hard

 Physical layout
 Where to put metadata and data

49

Overview
 Part I

 File system abstractions and operations
 Protection
 File system structure

 Disk allocation and i-nodes
 Directory and link implementations
 Physical layout for performance

 Part II
 Performance and reliability

 File buffer cache
 Disk failure and file recovery tools
 Consistent updates
 Transactions and logging

50

File Buffer Cache for Performance
 Cache files in main

memory
 Check the buffer cache

first
 Hit will read from or

write to the buffer cache
 Miss will read from the

disk to the buffer cache
 Usual questions

 What to cache?
 How to size?
 What to prefetch?
 How and what to

replace?
 Which write policies?

51

What to Cache?
 Things to consider

 I-nodes and indirect blocks of directories
 Directory files
 I-nodes and indirect blocks of files
 Files

 What is a good strategy?
 Cache i-nodes and indirect blocks if they are in

use?
 Cache only the i-nodes and indirect blocks of the

current directory?
 Cache an entire file vs. referenced blocks of files?

52

How to Size?
 An important issue is how to partition memory

between the buffer cache and VM cache
 Early systems use fixed-size buffer cache

 It does not adapt to workloads
 Later systems use variable size cache

 But, large files are common, how do we make adjustment?
 Basically, we solve the problem using the working set

idea

53

Challenges: Multiple User Processes
 Kernel

 All processes share the
same buffer cache

 Global LRU may not be
fair

 Solution
 Working set idea again

 Questions
 Can each process use a

different replacement
strategy?

 Can we move the buffer
cache to the user level?

 What about duplicates?

54

What to Prefetch?
 Optimal

 The blocks are fetched in just enough time to use
them

 But, too hard to do
 The good news is that files also have locality

 Temporal locality
 Spatial locality

 Common strategies
 Prefetch next k blocks together (typically > 64KB)
 Some discard unreferenced blocks
 Cluster blocks of the same directory and i-nodes if

possible (to the same cylinder group and
neighborhood) to make prefetching efficient

55

How and What to Replace?
 Page replacement theory

 Use past to predict future
 LRU is good

 Buffer cache with LRU
replacement mechanism
 If b is in buffer cache,

move it to front and
return b

 Otherwise, replace the
tail block, get b from
disk, insert b to the front

 Use double linked list
with a hash table

56

Which Write Policies?
 Write through

 Whenever modify cached
block, write block to disk

 Cache is always
consistent

 Simple, but cause more
I/Os

 Write back
 When modifying a block,

mark it as dirty & write
to disk later

 Fast writes, absorbs
writes, and enables
batching

 So, what’s the problem?

57

Write Back Complications
 Fundamental tension

 On crash, all modified data in cache is lost.
 The longer you postpone write backs, the faster

you are but the worst the damage is on a crash
 When to write back

 When a block is evicted
 When a file is closed
 On an explicit flush
 When a time interval elapses (30 seconds in Unix)

 Issues
 These write back options have no guarantees
 A solution is consistent updates (later)

58

File Recovery Tools
 Physical backup (dump) and recovery

 Dump disk blocks by blocks to a backup system
 Backup only changed blocks since the last

backup as an incremental
 Recovery tool built accordingly

 Logical backup (dump) and recovery
 Traverse the logical structure from the root
 Selectively dump what you want to backup
 Verify logical structures as you backup
 Recovery tool selectively move files back

 Consistency check (e.g. fsck)
 Start from the root i-node
 Traverse the whole tree and mark reachable

files
 Verify the logical structure
 Figure out what blocks are free

59

What fsck does
 Get default list of file systems to check from /etc/fstab
 Inconsistencies checked:

 Blocks claimed by more than one i-node or the free map
 Blocks claimed by an i-node outside range of the filesystem
 Incorrect link counts
 Size checks (directory size etc)
 Bad i-node format
 Blocks not accounted anywhere
 Directory checks:

 File pointing to unallocated i-node; I-node number out of range; .
or .. Not first two entries of a directory or have wrong i-node
number

 Super Block checks
 More blocks for i-nodes than are in the filesystem; Bad free block

map format; Total free block and/or free i-node count incorrect
 Put orphaned files and directories in lost+found directory

60

Recovery from Disk Block Failures
 Boot block

 Create a utility to replace
the boot block

 Use a flash memory to
duplicate the boot block
and kernel

 Super block
 If there is a duplicate,

remake file system
 Free block data structure

 Search all reachable files
from the root

 Unreachable blocks are
free

 i-node blocks
 Indirect or data blocks

61

Persistency and Crashes
 File system promise:

Persistency
 File system will hold a file until

its owner explicitly deletes it
 Why is this hard?

 A crash will destroy memory
content

 Cache more ⇒ better
performance

 Cache more ⇒ lose more on a
crash

 A file operation often requires
modifying multiple blocks, but
the system can only atomically
modify one at a time

 Systems can crash anytime

62

What is a Crash?
 Crash is like a context

switch
 Think about a file system

as a thread before the
context switch and another
after the context switch

 Two threads read or write
same shared state?

 Crash is like time travel
 Current volatile state lost;

suddenly go back to old
state

 Example: move a file
 Place it in a directory
 Delete it from old
 Crash happens and both

directories have problems

63

Approaches
 Throw everything away and start over

 Done for most things (e.g., make again)
 Reconstruction

 Figure out where you are and make the file system
consistent and go from there

 Try to fix things after a crash (“fsck”)
 Make updates consistent

 Either new data or old data, but not garbage data
 Make multiple updates appear atomic

 Build arbitrary sized atomic units from smaller
atomic ones

 Similar to how we built critical sections
64

65

66

Consistent Updates: Bottom-Up Order
 The general approach is to use a “bottom up” order

 File data blocks, file i-node, directory file, directory i-
node, …

 What about file buffer cache?
 Write back all data blocks
 Update file i-node and write it to disk
 Update directory file and write it to disk
 Update directory i-node and write it to disk (if necessary)
 Continue until no directory update exists

 Does this solve the write back problem?
 Updates are consistent but leave garbage blocks around
 May need to run fsck to clean up once a while
 Ideal approach: consistent update without leaving

garbage
67

Operations as transactions in FileSys
 Make a file operation a transaction

 Create a file
 Move a file
 Write a chunk of data
 …

 Make arbitrary number of file operations a
transaction
 Just keep logging but make sure that things are

idempotent: making a very long transaction
 Recovery by replaying the log and correct the file system
 This is called logging file system or journaling file system
 Almost all new file systems are journaling (Windows

NTFS, Veritas file system, file systems on Linux)

78

Log Management
 How big is the log? Same size as the file system?
 Observation

 Log what’s needed for crash recovery
 Management method

 Checkpoint operation: flush the buffer cache to disk
 After a checkpoint, we can truncate log and start

again
 Log needs to be big enough to hold changes in

memory
 Some logging file systems log only metadata

(file descriptors and directories) and not file data
to keep log size down

80

Log-structured File System (LFS)
 Structure the entire file system as a log with

segments
 A segment has i-nodes, indirect blocks, and

data blocks
 All writes are sequential (no seeks)
 There will be holes when deleting files

82

Summary – Part 2
 File buffer cache

 True LRU is possible
 Simple write back is vulnerable to crashes

 Disk block failures and file system recovery
tools
 Individual recovery tools
 Top down traversal tools

 Logging file systems

83

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10
	Slide 11
	Slide 12
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 25
	Slide 26
	Slide 27
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 78
	Slide 80
	Slide 82
	Slide 83

