File Systems

Inf-2201, University of Tromsø Loic Guegan (loic.guegan@uit.no)

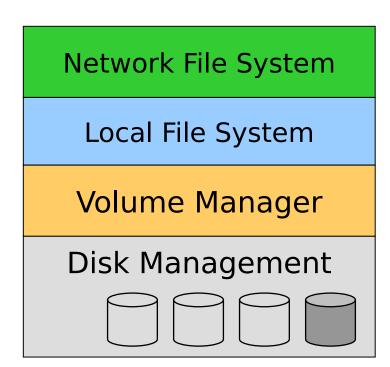
Based on slides from Lars Ailo Bongo(UiT), Kai Li (Princeton University)

Overview

Part I

- File system abstractions and operations
- Protection
- File system structure
 - Disk allocation and i-nodes
 - Directory and link implementations
 - Physical layout for performance
- Part II
 - Performance and reliability
 - File buffer cache
 - Disk failure and file recovery tools
 - Consistent updates
 - Transactions and logging

Why Files?


- Can't we just use main memory?
- Can't we use a mechanism like swapping to disk?
- Need to store large amount of information
- Need the information to survive process termination
- Need the information to be shareable by processes

Recall Some High-level Abstractions

- Processes are an abstraction for processors (CPU)
- Virtual memory is an abstraction for memory
- File systems are an abstraction for disks (disk blocks)

File System Layers and Abstractions

- Network file system maps a network file system protocol to local file systems
 - NFS, CIFS, DAFS, GFS, HDFS, Dropbox, etc
- Local file system implements a file system on blocks in volumes
 - Local disks or network of disks
- Volume manager maps logical volume to physical disks
 - Provide logical unit
 - RAID and reconstruction
- Disk management manages physical disks
 - Sometimes part of volume manager
 - Drivers, scheduling, etc

Volume Manager

- Group multiple disk partitions into a logical disk volume
 - No need to deal with physical disk, sector numbers
 - To read a block: read(vol#, block#, buf, n);
- Volume can include RAID, tolerating disk failures
 - No need to know about parity disk in RAID-5, for example
 - No need to know about reconstruction
- Volume can provide error detections at disk block level
 - Some products use a checksum block for 8 blocks of data
- Volume can grow or shrink without affecting existing data
- Volume can have remote volumes for disaster recovery
- Remote mirrors can be split or merged for backups

Files vs. Block Storage

File abstraction

- Byte oriented
- Named files
- Users protected from each other
- Robust to machine failures

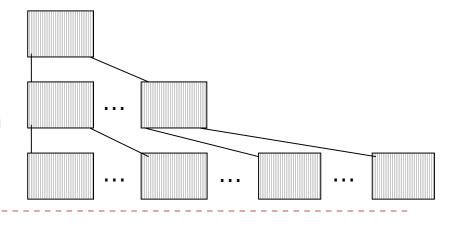
Disk abstraction

- Block oriented
- Block numbers
- No protection among users of the system
- Data might be corrupted if machine crashes

File Structure Possibilities

Byte sequence

- Read or write a number of bytes
- Unstructured or linear
- Unix, Windows


Record sequence

- Fixed or variable length
- Read or write a number of records
- Not used: punch card days

Tree

- Records with keys
- Read, insert, delete a record (typically using B-tree, sorted on key)
- Used in mainframes for commercial-data processing 8

File Types, examples

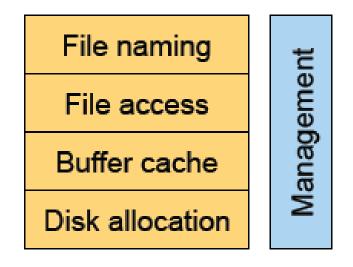
- ASCII
- Binary data
 - Record
 - Tree
 - An Unix executable file
 - header: magic number, sizes, entry point, flags
 - ► text
 - ► data
 - relocation bits
 - symbol table
- Devices
- Everything else in the system

Most common file operations

- Operations for "sequence of bytes" files
 - Create: create a mapping from a name to bytes
 - Delete: delete the mapping
 - Open: authentication, bring key attributes, disk info into RAM
 - Close: free up table space, force last block write
 - Seek: jump to a particular location in a file
 - Read: read some bytes from a file
 - Write: write some bytes to a file
 - Get attributes, Set attributes
- Implementation goal
 - Operations should have as few disk accesses as possible and have minimal space overhead

Access Patterns

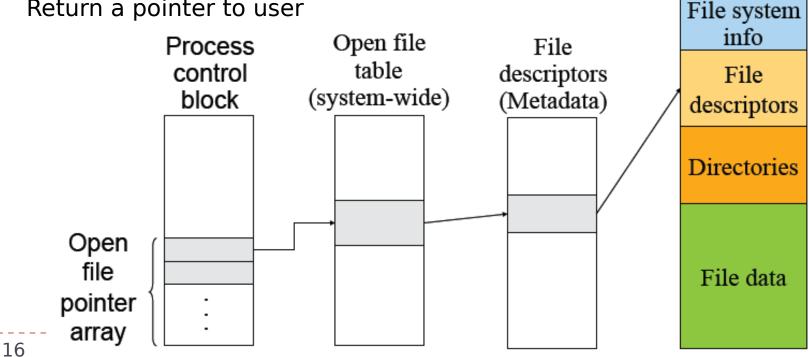
Sequential (the common pattern)


- File data processed sequentially
- Examples
 - Editor writes out a new file
 - Compiler reads a file
- Random access
 - Address a block in file directly without passing through predecessors
 - Examples:
 - Data set for demand paging
 - Databases

Keyed access

- Search for a record with particular values
- Usually not provided by today's file systems
- Examples
 - Database search and indexing

File System Components


- Naming
 - File and directory naming
 - Local and remote operations
- File access
 - Implement read/write and other functionalities
- Buffer cache
 - Reduce client/server disk I/Os
- Disk allocation
 - File data layout
 - Mapping files to disk blocks
- Management
 - Tools for system administrators to manage file systems

Volume manager

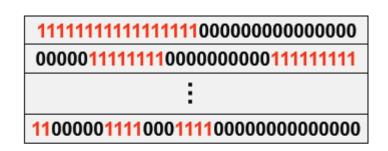
Steps to Open a file

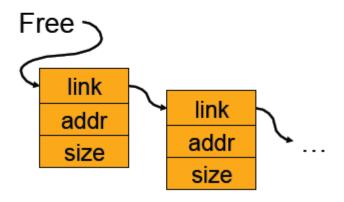
- File name lookup and authenticate
- Copy the file descriptors into the in-memory data structure, if it is not in yet
- Create an entry in the open file table (system wide) if there isn't one
- Create an entry in PCB
- Link up the data structures
- Return a pointer to user

File Read and Write

Read 10 bytes from a file starting at byte 2?

- seek byte 2
- fetch the block
- read 10 bytes
- Write 10 bytes to a file starting at byte 2?
 - seek byte 2
 - fetch the block
 - write 10 bytes in memory
 - write out the block


Disk Layout

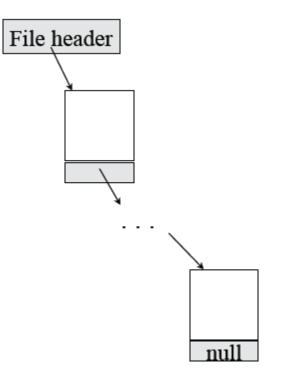

Boot block	-	File descriptors (i-node in Unix)	File data blocks
---------------	---	--------------------------------------	------------------

- Boot block
 - Code to bootstrap the operating system
- Super-block defines a file system
 - Size of the file system
 - Size of the file descriptor area
 - Free list pointer, or pointer to bitmap
 - Location of the file descriptor of the root directory
 - Other meta-data such as permission and various times
 - Kernel keeps in main memory, replicated on disk
- File descriptors
- File data blocks
 - Data for the files, the largest portion on disk

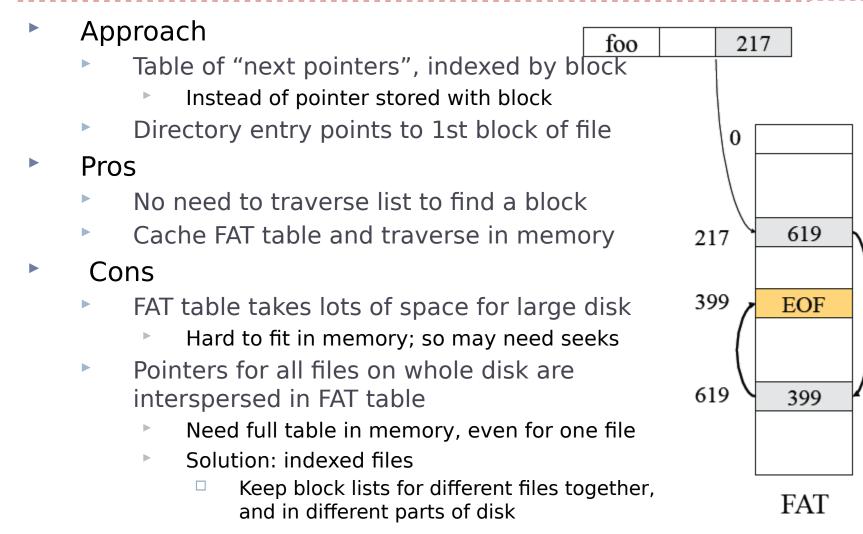
Data Structures for Disk Allocation

- The goal is to manage the allocation of a volume
- A file header for each file
 - Disk blocks associated with each file
- A data structure to represent free space on disk
 - Bit map that uses 1 bit per block (sector)
 - Linked list that chains free blocks together

. . .


Contiguous Allocation

- Request in advance for the size of the file
- Search bit map or linked list to locate a space
- File header
 - First block in file
 - Number of blocks
- Pros
 - Fast sequential access
 - Easy random access
- Cons
 - External fragmentation (what if file C needs 3 blocks)
 - Hard to grow files: may have to move (large) files on disk
 - May need compaction

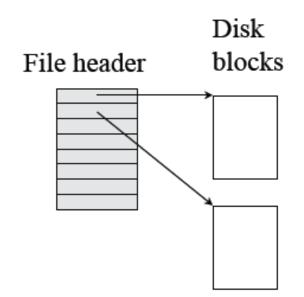


Linked Files

- File header points to 1st block on disk
- A block points to the next
- Pros
 - Can grow files dynamically
 - Free list is similar to a file
 - No external fragmentation or need to move files
- Cons
 - Random access: horrible
 - Even sequential access needs one seek per block
 - Unreliable: losing a block means losing the rest

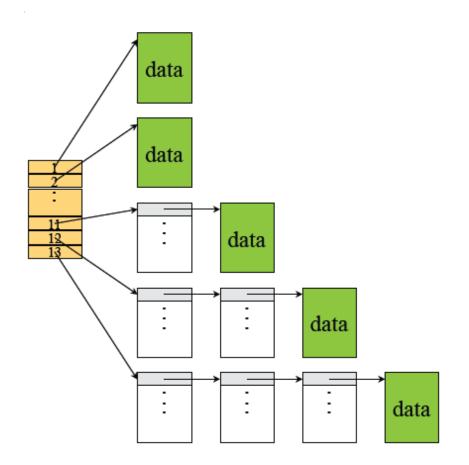
File Allocation Table (FAT)

Single-Level Indexed Files


A file header holds an array of pointers to point to disk blocks

Pros

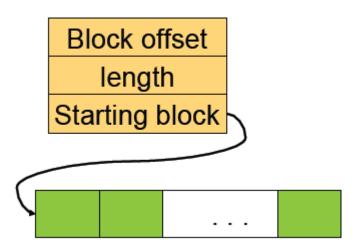
- Can grow up to a limit
- Random access is fast


Cons

- Clumsy to grow beyond the limit
- Still lots of seeks

Multi-Level Indexed Files (Unix)

- 13 Pointers in a header
 - 1...10: direct pointers
 - 11: 1-level indirect
 - 12: 2-level indirect
 - 13: 3-level indirect
- Pros & Cons
 - In favor of small files
 - Can grow
 - Limit is 16G and lots of seek



What's in Original Unix i-node?

- Mode: file type, protection bits, setuid, setgid bits
- Link count: number of directory entries pointing to this
- Uid: uid of the file owner
- Gid: gid of the file owner
- File size
- Times (access, modify, change)
- No filename (why?)
- 10 pointers to data blocks
- Single indirect pointer
- Double indirect pointer
- Triple indirect pointer

Extents

- Instead of using a fixed size block, use a number of blocks
 - XFS uses 8Kbyte block
 - Max extent size is 2M blocks
- Index nodes need to have
 - Block offset
 - Length
 - Starting block

Directory Organization Examples

Flat

All files are in one directory

Hierarchical (Unix)

- /home/foo/bar
- Directory is stored in a file containing (name, inode) pairs
- The name can be either a file or a directory

Mapping File Names to i-nodes

- Create/delete
 - Create/delete a directory
- Open/close
 - Open/close a directory for read and write
- Link/unlink
 - Link/unlink a file
- Rename
 - Rename the directory

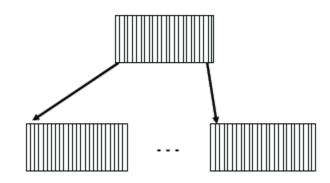
Linear List

Method

- <FileName, i-node> pairs are linearly stored in a file
- Create a file
 - Append <FileName, i-node>
- Delete a file
 - Search for FileName
 - Remove its pair from the directory
 - Compact by moving the rest
- Pros
 - Space efficient
- Cons
 - Linear search
 - Need to deal with fragmentation

/home/userY/foo/ bar/... veryLongFileName

<foo,1234> <bar,1235> ... <veryLongFileName, 4567>


Tree Data Structure

Method

- Store <fileName, i-node> a tree data structure such as Btree
- Create/delete/search in the tree data structure

Pros

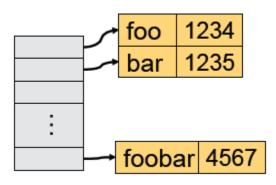
 Good for a large number of files

Cons

- Inefficient for a small number of files
- More space
- Complex

Hashing

Method


- Use a hash table to map FileName to i-node
- Space for name and metadata is variable sized
- Create/delete will trigger space allocation and free

Pros

 Fast searching and relatively simple

Cons

 Not as efficient as trees for very large directory (wasting space for the hash table)

Disk I/Os to Read/Write A File

- Disk I/Os to access a byte of /home/foo/bar
 - Read the i-node and first data block of "/"
 - Read the i-node and first data block of "home"
 - Read the i-node and first data block of "foo"
 - Read the i-node and first data block of "bar"

Disk I/Os to write a file

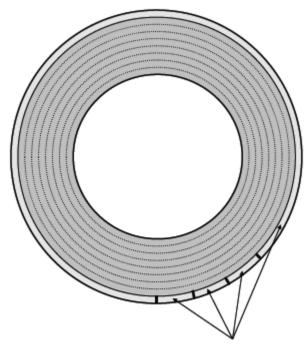
- Read the i-node of the directory and the directory file.
- Read or create the i-node of the file
- Read or create the file itself
- Write back the directory and the file
- Too many I/Os to traverse the directory
 - Solution is to use Current Working Directory

Links

Symbolic (soft) links

- A symbolic link is just the name of the file
- Original owner still owns the file, deleted on rm by owner
- Use a new i-node for the symbolic link In -s source target

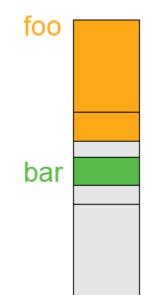
Hard links


- A link to a file with the same i-node In source target
- Delete may or may not remove the target depending on whether it is the last one (link reference count)

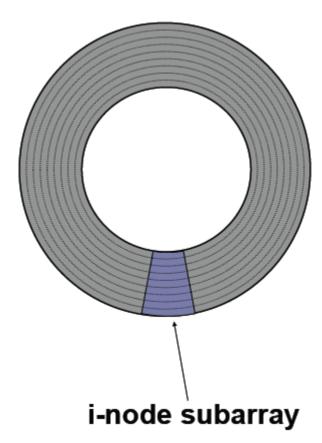
Original Unix File System

- Simple disk layout
 - Block size is sector size (512 bytes)
 - i-nodes are on outermost cylinders
 - Data blocks are on inner cylinders
 - Use linked list for free blocks

Issues


- Index is large
- Fixed max number of files
- i-nodes far from data blocks
- i-nodes for directory not close together
- Consecutive blocks can be anywhere
- Poor bandwidth (20Kbytes/sec even for sequential access!)

i-node array


BSD FFS (Fast File System)

- Use a larger block size: 4KB or 8KB
 - Allow large blocks to be chopped into fragments
- Use bitmap instead of a free list
 - Try to allocate contiguously
 - 10% reserved disk space

FFS Disk Layout

- i-nodes are grouped together
 - A portion of the i-node array on each cylinder
- Do you ever read inodes without reading any file blocks?
- Overcome rotational delays
 - Skip sector positioning to avoid the context switch delay
 - Read ahead: read next block right after the first

What Has FFS Achieved?

Performance improvements

- 20-40% of disk bandwidth for large files (10-20x original)
- Better small file performance
- We can still do a lot better
 - Extent based instead of block based
 - Use a pointer and size for all contiguous blocks (XFS, Veritas file system, etc)
 - Synchronous metadata writes hurt small file performance
 - Asynchronous writes with certain ordering ("soft updates")
 - Logging (talk about this later)
 - Play with semantics (/tmp file systems)

Side note : Protection Policy vs. Mechanism

- A protection system is the mechanism to enforce a security policy
 - Roughly the same set of choices, no matter what policy
- A security policy determines what is acceptable or not
 - Example security policies:
 - Each user can only allocate 40GB of disk
 - No one but root can write to the password file
 - You cannot read my mail

Protection Mechanisms

- Authentication
 - Make sure system knows whom it is talking to
 - Unix: password
 - US banks: account # + last transactions
 - Bars: driver's license
- Authorization
 - Determine if "X" is allowed to do "Y"
 - Need a simple database

Access enforcement

- Enforce authorization decision
- Must make sure there are no loopholes
- Hard to assert

Protection Domain

- A set of (objects, rights) pairs
 - Domain may correspond to single user, or more general
 - Process runs in a domain at a given instant in time
- Once identity known, what is Bob allowed to do?
 - More generally: must be able to determine what each "principal" is allowed to do with what
- Can be represented as a "protection matrix" with one row per domain, one column per resource
- What are the pros and cons of this approach?

	File A	Printer B	File C
Domain 1	R	W	RW
Domain 2	RW	W	
Domain 3	R		RW

Access Control Lists (ACLs)

- By column: For each object, indicate which users are allowed to perform which operations
 - In most general form, each object has a list of <user,privileged> pairs
- Access control lists are simple, and are used in almost all file systems
 - Owner, group, world
- Implementation
 - Stores ACLs in each file
 - Use login authentication to identify
 - Kernel implements ACLs

Capabilities

- By rows: For each user, indicate which files may be accessed and in what ways
 - Store a lists of <object, privilege> pairs for each user.
 - Called a Capability List
- Capabilities frequently do both naming and protection
 - Can only "see" an object if you have a capability for it.
 - Default is no access
- Implementation
 - Capability lists
 - Architecture support
 - Stored in the kernel
 - Stored in the user space but in encrypted format
 - Checking is easy: no enumeration

Access Enforcement

- Use a trusted party to
 - Enforce access controls
 - Protect authorization information
- Kernel is the trusted party
 - This part of the system can do anything it wants
 - If it has a bug, the entire system can be destroyed
 - Want it to be as small & simple as possible
- Security is only as strong as the weakest link in the protection system

Summary - Part 1

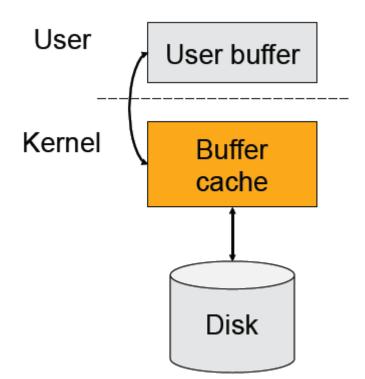
- Protection
 - We basically live with access control list
 - More protection is needed in the future
- File system structure
 - Boot block, super block, file metadata, file data

File metadata

Consider efficiency, space and fragmentation

Directories

- Consider the number of files
- Links
 - Soft vs. hard
- Physical layout
 - Where to put metadata and data


Overview

Part I

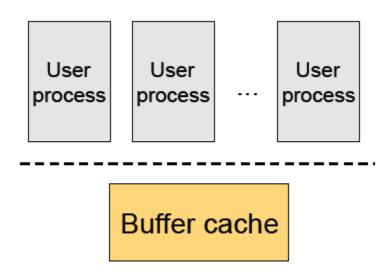
- File system abstractions and operations
- Protection
- File system structure
 - Disk allocation and i-nodes
 - Directory and link implementations
 - Physical layout for performance
- Part II
 - Performance and reliability
 - File buffer cache
 - Disk failure and file recovery tools
 - Consistent updates
 - Transactions and logging

File Buffer Cache for Performance

- Cache files in main memory
 - Check the buffer cache first
 - Hit will read from or write to the buffer cache
 - Miss will read from the disk to the buffer cache
- Usual questions
 - What to cache?
 - How to size?
 - What to prefetch?
 - How and what to replace?
 - Which write policies?

What to Cache?

Things to consider


- I-nodes and indirect blocks of directories
- Directory files
- I-nodes and indirect blocks of files
- Files
- What is a good strategy?
 - Cache i-nodes and indirect blocks if they are in use?
 - Cache only the i-nodes and indirect blocks of the current directory?
 - Cache an entire file vs. referenced blocks of files?

How to Size?

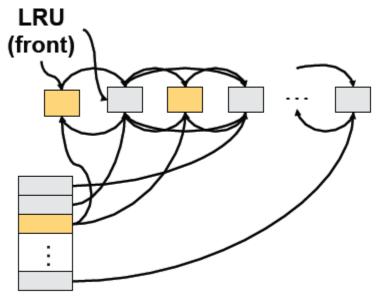
- An important issue is how to partition memory between the buffer cache and VM cache
- Early systems use fixed-size buffer cache
 - It does not adapt to workloads
- Later systems use variable size cache
 - But, large files are common, how do we make adjustment?
- Basically, we solve the problem using the working set idea

Challenges: Multiple User Processes

- Kernel
 - All processes share the same buffer cache
 - Global LRU may not be fair
- Solution
 - Working set idea again
- Questions
 - Can each process use a different replacement strategy?
 - Can we move the buffer cache to the user level?
 - What about duplicates?

What to Prefetch?

Optimal

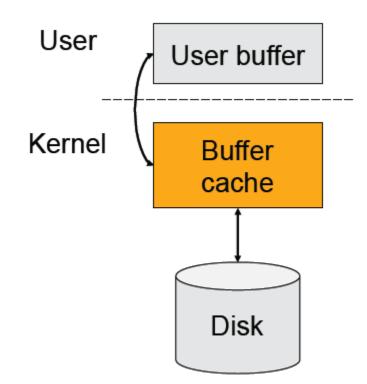

- The blocks are fetched in just enough time to use them
- But, too hard to do
- The good news is that files also have locality
 - Temporal locality
 - Spatial locality

Common strategies

- Prefetch next k blocks together (typically > 64KB)
- Some discard unreferenced blocks
- Cluster blocks of the same directory and i-nodes if possible (to the same cylinder group and neighborhood) to make prefetching efficient

How and What to Replace?

- Page replacement theory
 - Use past to predict future
 - LRU is good
- Buffer cache with LRU replacement mechanism
 - If b is in buffer cache, move it to front and return b
 - Otherwise, replace the tail block, get b from disk, insert b to the front
 - Use double linked list with a hash table


Hash table

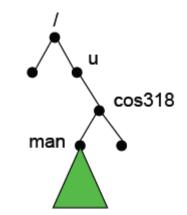
Which Write Policies?

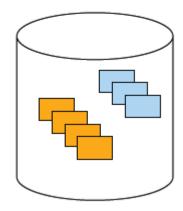
- Write through
 - Whenever modify cached block, write block to disk
 - Cache is always consistent
 - Simple, but cause more I/Os

Write back

- When modifying a block, mark it as dirty & write to disk later
- Fast writes, absorbs writes, and enables batching
- So, what's the problem?

Write Back Complications


- Fundamental tension
 - On crash, all modified data in cache is lost.
 - The longer you postpone write backs, the faster you are but the worst the damage is on a crash
- When to write back
 - When a block is evicted
 - When a file is closed
 - On an explicit flush
 - When a time interval elapses (30 seconds in Unix)

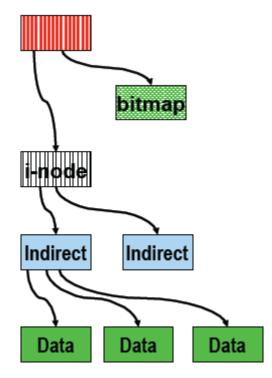

Issues

- These write back options have no guarantees
- A solution is consistent updates (later)

File Recovery Tools

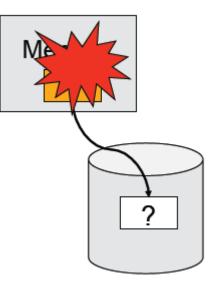
- Physical backup (dump) and recovery
 - Dump disk blocks by blocks to a backup system
 - Backup only changed blocks since the last backup as an incremental
 - Recovery tool built accordingly
- Logical backup (dump) and recovery
 - Traverse the logical structure from the root
 - Selectively dump what you want to backup
 - Verify logical structures as you backup
 - Recovery tool selectively move files back
- Consistency check (e.g. fsck)
 - Start from the root i-node
 - Traverse the whole tree and mark reachable files
 - Verify the logical structure
 - Figure out what blocks are free

What fsck does


- Get default list of file systems to check from /etc/fstab
- Inconsistencies checked:
 - Blocks claimed by more than one i-node or the free map
 - Blocks claimed by an i-node outside range of the filesystem
 - Incorrect link counts
 - Size checks (directory size etc)
 - Bad i-node format
 - Blocks not accounted anywhere
 - Directory checks:
 - File pointing to unallocated i-node; I-node number out of range; . or .. Not first two entries of a directory or have wrong i-node number
 - Super Block checks
 - More blocks for i-nodes than are in the filesystem; Bad free block map format; Total free block and/or free i-node count incorrect
 - Put orphaned files and directories in lost+found directory

Recovery from Disk Block Failures

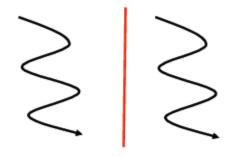
- Boot block
 - Create a utility to replace the boot block
 - Use a flash memory to duplicate the boot block and kernel
- Super block
 - If there is a duplicate, remake file system


Free block data structure

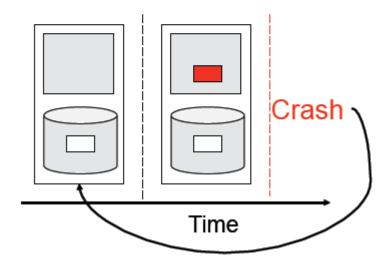
- Search all reachable files from the root
- Unreachable blocks are free
- i-node blocks
 - Indirect or data blocks

Persistency and Crashes

- File system promise: Persistency
 - File system will hold a file until its owner explicitly deletes it
- Why is this hard?
 - A crash will destroy memory content
 - Cache more ⇒ better performance
 - Cache more ⇒ lose more on a crash
 - A file operation often requires modifying multiple blocks, but the system can only atomically modify one at a time
 - Systems can crash anytime



What is a Crash?


- Crash is like a context switch
 - Think about a file system as a thread before the context switch and another after the context switch
 - Two threads read or write same shared state?

Crash is like time travel

- Current volatile state lost; suddenly go back to old state
- Example: move a file
 - Place it in a directory
 - Delete it from old
 - Crash happens and both directories have problems

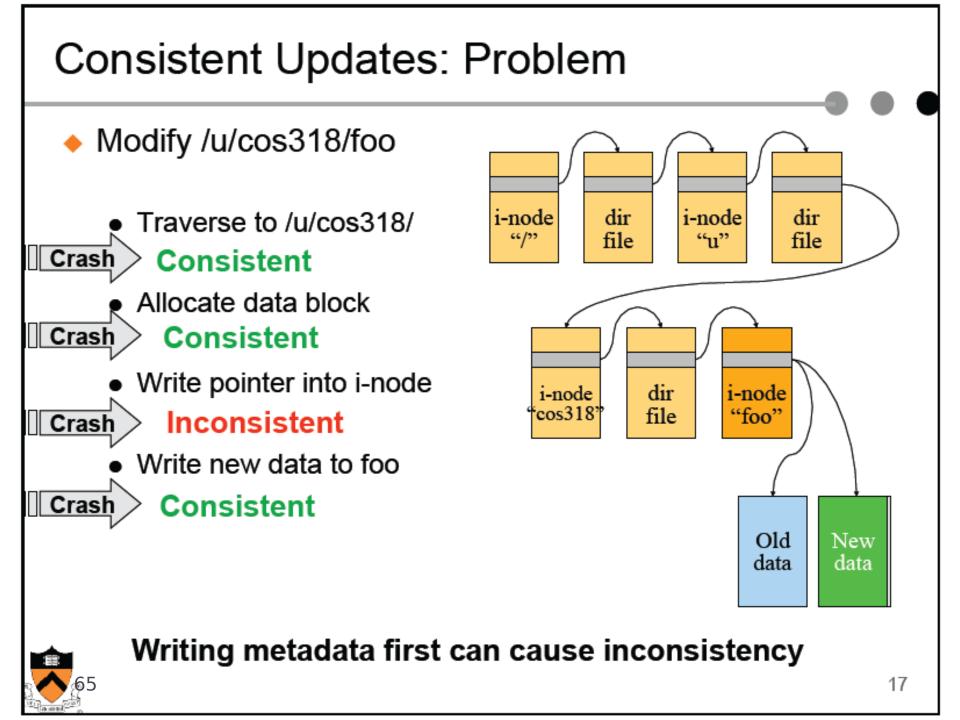
Before Crash After

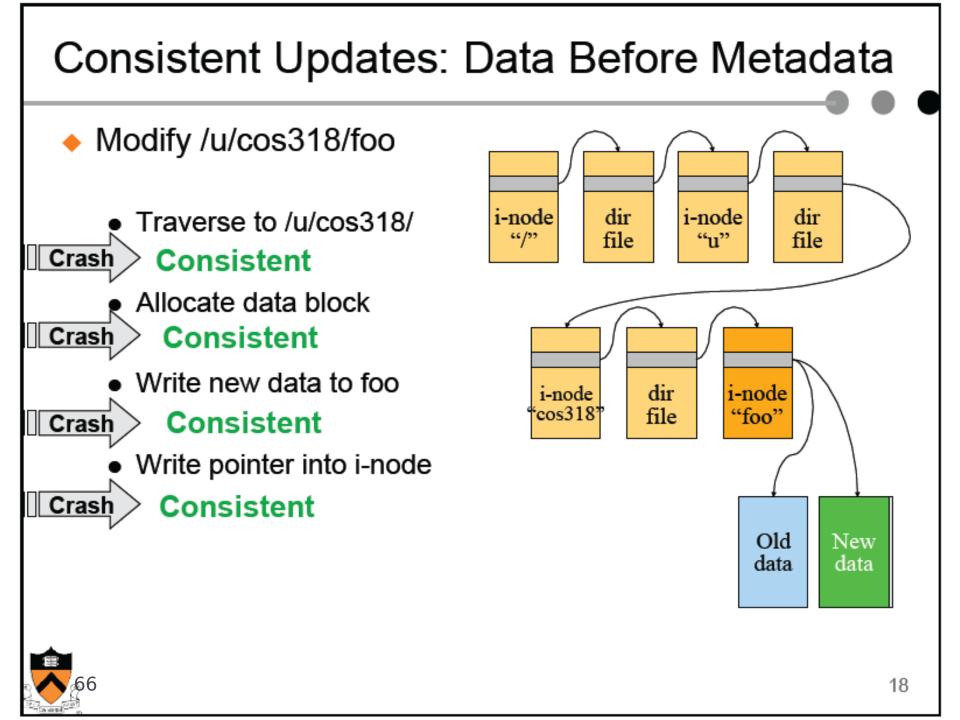
Approaches

Throw everything away and start over

Done for most things (e.g., make again)

Reconstruction


- Figure out where you are and make the file system consistent and go from there
- Try to fix things after a crash ("fsck")


Make updates consistent

Either new data or old data, but not garbage data

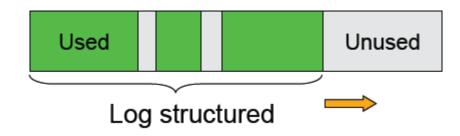
Make multiple updates appear atomic

- Build arbitrary sized atomic units from smaller atomic ones
- Similar to how we built critical sections

Consistent Updates: Bottom-Up Order

- The general approach is to use a "bottom up" order
 - File data blocks, file i-node, directory file, directory inode, ...
- What about file buffer cache?
 - Write back all data blocks
 - Update file i-node and write it to disk
 - Update directory file and write it to disk
 - Update directory i-node and write it to disk (if necessary)
 - Continue until no directory update exists
- Does this solve the write back problem?
 - Updates are consistent but leave garbage blocks around
 - May need to run fsck to clean up once a while
 - Ideal approach: consistent update without leaving garbage

Operations as transactions in FileSys


- Make a file operation a transaction
 - Create a file
 - Move a file
 - Write a chunk of data
 - ▶ ...
- Make arbitrary number of file operations a transaction
 - Just keep logging but make sure that things are idempotent: making a very long transaction
 - Recovery by replaying the log and correct the file system
 - This is called logging file system or journaling file system
 - Almost all new file systems are journaling (Windows NTFS, Veritas file system, file systems on Linux)

Log Management

- How big is the log? Same size as the file system?
- Observation
 - Log what's needed for crash recovery
- Management method
 - Checkpoint operation: flush the buffer cache to disk
 - After a checkpoint, we can truncate log and start again
 - Log needs to be big enough to hold changes in memory
- Some logging file systems log only metadata (file descriptors and directories) and not file data to keep log size down

Log-structured File System (LFS)

- Structure the entire file system as a log with segments
- A segment has i-nodes, indirect blocks, and data blocks
- All writes are sequential (no seeks)
- There will be holes when deleting files

Summary – Part 2

- File buffer cache
 - True LRU is possible
 - Simple write back is vulnerable to crashes
- Disk block failures and file system recovery tools
 - Individual recovery tools
 - Top down traversal tools
- Logging file systems