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Overview
 Part I

 File system abstractions and operations
 Protection
 File system structure

 Disk allocation and i-nodes
 Directory and link implementations
 Physical layout for performance

 Part II
 Performance and reliability

 File buffer cache
 Disk failure and file recovery tools
 Consistent updates
 Transactions and logging
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Why Files?
 Can’t we just use main memory?
 Can’t we use a mechanism like swapping to 

disk?

 Need to store large amount of information
 Need the information to survive process 

termination
 Need the information to be shareable by 

processes
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Recall Some High-level Abstractions

 Processes are an abstraction for processors (CPU)

 Virtual memory is an abstraction for memory

 File systems are an abstraction for disks (disk 
blocks)
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File System Layers and Abstractions
 Network file system maps a 

network file system protocol to 
local file systems
 NFS, CIFS, DAFS, GFS, HDFS, 

Dropbox, etc
 Local file system implements a 

file system on blocks in 
volumes
 Local disks or network of disks

 Volume manager maps logical 
volume to physical disks
 Provide logical unit
 RAID and reconstruction

 Disk management manages 
physical disks 
 Sometimes part of volume manager
 Drivers, scheduling, etc

Disk Management

Volume Manager

Local File System

Network File System



6

Volume Manager

 Group multiple disk partitions into a logical disk volume
 No need to deal with physical disk, sector numbers
 To read a block: read( vol#, block#, buf, n );

 Volume can include RAID, tolerating disk failures
 No need to know about parity disk in RAID-5, for example
 No need to know about reconstruction

 Volume can provide error detections at disk block level
 Some products use a checksum block for 8 blocks of data

 Volume can grow or shrink without affecting existing data
 Volume can have remote volumes for disaster recovery
 Remote mirrors can be split or merged for backups
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Files vs. Block Storage

Disk abstraction
 Block oriented
 Block numbers
 No protection among users of the system
 Data might be corrupted if machine crashes

File abstraction
 Byte oriented
 Named files
 Users protected from each other
 Robust to machine failures
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File Structure Possibilities
 Byte sequence

 Read or write a number of bytes
 Unstructured or linear
 Unix, Windows

 Record sequence
 Fixed or variable length
 Read or write a number of 

records
 Not used: punch card days

 Tree
 Records with keys
 Read, insert, delete a record 

(typically using B-tree, sorted on 
key)

 Used in mainframes for 
commercial data processing

…

… … …
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File Types, examples
 ASCII
 Binary data

 Record
 Tree
 An Unix executable file

 header: magic number, sizes, entry point, flags
 text
 data
 relocation bits
 symbol table

 Devices
 Everything else in the system
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Most common file operations
 Operations for “sequence of bytes” files

 Create: create a mapping from a name to bytes
 Delete: delete the mapping
 Open: authentication, bring key attributes, disk info 

into RAM
 Close: free up table space, force last block write
 Seek: jump to a particular location in a file
 Read: read some bytes from a file
 Write: write some bytes to a file
 Get attributes, Set attributes

 Implementation goal
 Operations should have as few disk accesses as 

possible and have minimal space overhead
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Access Patterns
 Sequential (the common pattern)

 File data processed sequentially
 Examples

 Editor writes out a new file
 Compiler reads a file

 Random access
 Address a block in file directly without passing through 

predecessors
 Examples:

 Data set for demand paging
 Databases

 Keyed access
 Search for a record with particular values
 Usually not provided by today’s file systems
 Examples

 Database search and indexing



File System Components
 Naming

 File and directory naming
 Local and remote 

operations
 File access

 Implement read/write and 
other functionalities

 Buffer cache
 Reduce client/server disk 

I/Os
 Disk allocation

 File data layout
 Mapping files to disk blocks

 Management
 Tools for system 

administrators to manage 
file systems
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Steps to Open a file
 File name lookup and authenticate
 Copy the file descriptors into the in-memory data structure, if it is 

not in yet
 Create an entry in the open file table (system wide) if there isn’t one
 Create an entry in PCB
 Link up the data structures
 Return a pointer to user
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File Read and Write
 Read 10 bytes from a file starting at byte 2?

 seek byte 2
 fetch the block
 read 10 bytes

 Write 10 bytes to a file starting at byte 2?
 seek byte 2
 fetch the block
 write 10 bytes in memory
 write out the block
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Disk Layout

 Boot block
 Code to bootstrap the operating system

 Super-block defines a file system
 Size of the file system
 Size of the file descriptor area
 Free list pointer, or pointer to bitmap
 Location of the file descriptor of the root directory
 Other meta-data such as permission and various times
 Kernel keeps in main memory, replicated on disk

 File descriptors
 File data blocks

 Data for the files, the largest portion on disk
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Data Structures for Disk Allocation
 The goal is to manage 

the allocation of a 
volume

 A file header for each file
 Disk blocks associated 

with each file
 A data structure to 

represent free space on 
disk
 Bit map that uses 1 bit 

per block (sector)
 Linked list that chains 

free blocks together
 …
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Contiguous Allocation
 Request in advance for the size of the file
 Search bit map or linked list to locate a space
 File header

 First block in file
 Number of blocks

 Pros
 Fast sequential access
 Easy random access

 Cons
 External fragmentation (what if file C needs 3 blocks)
 Hard to grow files: may have to move (large) files on disk
 May need compaction
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Linked Files
 File header points to 1st 

block on disk
 A block points to the next
 Pros

 Can grow files 
dynamically

 Free list is similar to a file
 No external 

fragmentation or need to 
move files

 Cons
 Random access: horrible
 Even sequential access 

needs one seek per block
 Unreliable: losing a block 

means losing the rest
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File Allocation Table (FAT)
 Approach

 Table of “next pointers”, indexed by block
 Instead of pointer stored with block

 Directory entry points to 1st block of file
 Pros

 No need to traverse list to find a block
 Cache FAT table and traverse in memory

  Cons
 FAT table takes lots of space for large disk

 Hard to fit in memory; so may need seeks
 Pointers for all files on whole disk are 

interspersed in FAT table
 Need full table in memory, even for one file
 Solution: indexed files

 Keep block lists for different files together, 
and in different parts of disk
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Single-Level Indexed Files
 A file header holds an 

array of pointers to point 
to disk blocks

 Pros
 Can grow up to a limit
 Random access is fast

 Cons
 Clumsy to grow beyond 

the limit
 Still lots of seeks
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Multi-Level Indexed Files (Unix)
 13 Pointers in a 

header
 1…10: direct pointers
 11: 1-level indirect
 12: 2-level indirect
 13: 3-level indirect

 Pros & Cons
 In favor of small files
 Can grow
 Limit is 16G and lots 

of seek
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What’s in Original Unix i-node?
 Mode: file type, protection bits, setuid, setgid bits
 Link count: number of directory entries pointing to 

this
 Uid: uid of the file owner
 Gid: gid of the file owner
 File size
 Times (access, modify, change)
 No filename (why?)
 10 pointers to data blocks
 Single indirect pointer
 Double indirect pointer
 Triple indirect pointer
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Extents
 Instead of using a 

fixed size block, use 
a number of blocks
 XFS uses 8Kbyte block
 Max extent size is 2M 

blocks
 Index nodes need to 

have
 Block offset
 Length
 Starting block
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Directory Organization Examples
 Flat

 All files are in one directory
 Hierarchical (Unix)

 /home/foo/bar
 Directory is stored in a file containing (name, i-

node) pairs
 The name can be either a file or a directory
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Mapping File Names to i-nodes
 Create/delete

 Create/delete a directory
 Open/close

 Open/close a directory for read and write
 Link/unlink

 Link/unlink a file
 Rename

 Rename the directory
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Linear List
 Method

 <FileName, i-node> pairs 
are linearly stored in a file

 Create a file
 Append <FileName, i-node>

 Delete a file
 Search for FileName
 Remove its pair from the 

directory
 Compact by moving the rest

  Pros
 Space efficient

 Cons
 Linear search
 Need to deal with 

fragmentation

 /home/userY/foo/
bar/…
veryLongFileName

<foo,1234> 
<bar,1235> … 
<veryLongFileName,
4567>
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Tree Data Structure
 Method

 Store <fileName, i-node> a 
tree data structure such as B-
tree

 Create/delete/search in the 
tree data structure

 Pros
 Good for a large number of 

files
 Cons

 Inefficient for a small number 
of files

 More space
 Complex
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Hashing
 Method

 Use a hash table to map 
FileName to i-node

 Space for name and 
metadata is variable 
sized

 Create/delete will trigger 
space allocation and free

 Pros
 Fast searching and 

relatively simple
 Cons

 Not as efficient as trees 
for very large directory 
(wasting space for the 
hash table)
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Disk I/Os to Read/Write A File
 Disk I/Os to access a byte of /home/foo/bar

 Read the i-node and first data block of “/”
 Read the i-node and first data block of “home”
 Read the i-node and first data block of “foo”
 Read the i-node and first data block of “bar”

 Disk I/Os to write a file
 Read the i-node of the directory and the directory file.
 Read or create the i-node of the file
 Read or create the file itself
 Write back the directory and the file

 Too many I/Os to traverse the directory
 Solution is to use Current Working Directory
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Links
 Symbolic (soft) links

 A symbolic link is just the name of the file
 Original owner still owns the file, deleted on rm by 

owner
 Use a new i-node for the symbolic link

ln –s source target
 Hard links

 A link to a file with the same i-node
ln source target

 Delete may or may not remove the target 
depending on whether it is the last one (link 
reference count)
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Original Unix File System
 Simple disk layout

 Block size is sector size (512 bytes)
 i-nodes are on outermost cylinders
 Data blocks are on inner cylinders
 Use linked list for free blocks

 Issues
 Index is large
 Fixed max number of files
 i-nodes far from data blocks
 i-nodes for directory not close 

together
 Consecutive blocks can be 

anywhere
 Poor bandwidth (20Kbytes/sec 

even for sequential access!)
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BSD FFS (Fast File System)
 Use a larger block 

size: 4KB or 8KB
 Allow large blocks to 

be chopped into 
fragments

 Use bitmap instead 
of a free list
 Try to allocate 

contiguously
 10% reserved disk 

space
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FFS Disk Layout
 i-nodes are grouped 

together
 A portion of the i-node 

array on each cylinder
 Do you ever read i-

nodes without reading 
any file blocks?

 Overcome rotational 
delays
 Skip sector positioning 

to avoid the context 
switch delay

 Read ahead: read next 
block right after the first
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What Has FFS Achieved?
 Performance improvements

 20-40% of disk bandwidth for large files (10-20x 
original)

 Better small file performance
 We can still do a lot better

 Extent based instead of block based
 Use a pointer and size for all contiguous blocks (XFS,  

Veritas file system, etc)
 Synchronous metadata writes hurt small file 

performance
 Asynchronous writes with certain ordering (“soft updates”)
 Logging (talk about this later)
 Play with semantics (/tmp file systems)
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Side note : Protection Policy vs. 
Mechanism

 A protection system is the mechanism to 
enforce a security policy 
 Roughly the same set of choices, no matter what 

policy
 A security policy determines what is 

acceptable or not
 Example security policies:

 Each user can only allocate 40GB of disk
 No one but root can write to the password file
 You cannot read my mail
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Protection Mechanisms
 Authentication

 Make sure system knows whom it is talking to
 Unix: password
 US banks:  account # + last transactions
 Bars: driver’s license

 Authorization
 Determine if “X” is allowed to do “Y”
 Need a simple database

 Access enforcement
 Enforce authorization decision
 Must make sure there are no loopholes
 Hard to assert
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Protection Domain
 A set of (objects, rights) pairs

 Domain may correspond to single user, or more general
 Process runs in a domain at a given instant in time

 Once identity known, what is Bob allowed to do?
 More generally: must be able to determine what each 

“principal” is allowed to do with what
 Can be represented as a “protection matrix” with 

one row per domain, one column per resource
 What are the pros and cons of this approach?

File A Printer B File C

Domain 1 R W RW

Domain 2 RW W …

Domain 3 R … RW
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Access Control Lists (ACLs)
 By column:  For each object, indicate which 

users are allowed to perform which operations
 In most general form, each object has a list of

<user,privileged> pairs
 Access control lists are simple, and are used 

in almost all file systems
 Owner, group, world

 Implementation
 Stores ACLs in each file
 Use login authentication to identify
 Kernel implements ACLs
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Capabilities
 By rows: For each user, indicate which files may be 

accessed and in what ways
 Store a lists of <object, privilege> pairs for each user.

 Called a Capability List
 Capabilities frequently do both naming and protection

 Can only “see” an object if you have a capability for it.
 Default is no access

 Implementation
 Capability lists

 Architecture support
 Stored in the kernel
 Stored in the user space but in encrypted format

 Checking is easy: no enumeration
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Access Enforcement
 Use a trusted party to 

 Enforce access controls
 Protect authorization information

 Kernel is the trusted party
 This part of the system can do anything it wants
 If it has a bug, the entire system can be destroyed
 Want it to be as small & simple as possible

 Security is only as strong as the weakest link 
in the protection system



Summary - Part 1
 Protection

 We basically live with access control list
 More protection is needed in the future

 File system structure
 Boot block, super block, file metadata, file data

 File metadata
 Consider efficiency, space and fragmentation

 Directories
 Consider the number of files

 Links
 Soft vs. hard

 Physical layout
 Where to put metadata and data
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Overview
 Part I

 File system abstractions and operations
 Protection
 File system structure

 Disk allocation and i-nodes
 Directory and link implementations
 Physical layout for performance

 Part II
 Performance and reliability

 File buffer cache
 Disk failure and file recovery tools
 Consistent updates
 Transactions and logging
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File Buffer Cache for Performance
 Cache files in main 

memory
 Check the buffer cache 

first
 Hit will read from or 

write to the buffer cache
 Miss will read from the 

disk to the buffer cache
 Usual questions

 What to cache?
 How to size?
 What to prefetch?
 How and what to 

replace?
 Which write policies?
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What to Cache?
 Things to consider

 I-nodes and indirect blocks of directories
 Directory files
 I-nodes and indirect blocks of files
 Files

 What is a good strategy?
 Cache i-nodes and indirect blocks if they are in 

use?
 Cache only the i-nodes and indirect blocks of the 

current directory?
 Cache an entire file vs. referenced blocks of files?

52



How to Size?
 An important issue is how to partition memory 

between the buffer cache and VM cache
 Early systems use fixed-size buffer cache

 It does not adapt to workloads
 Later systems use variable size cache

 But, large files are common, how do we make adjustment?
 Basically, we solve the problem using the working set 

idea
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Challenges: Multiple User Processes
 Kernel

 All processes share the 
same buffer cache

 Global LRU may not be 
fair

 Solution
 Working set idea again

 Questions
 Can each process use a 

different replacement 
strategy?

 Can we move the buffer 
cache to the user level?

 What about duplicates?
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What to Prefetch?
 Optimal

 The blocks are fetched in just enough time to use 
them

 But, too hard to do
 The good news is that files also have locality

 Temporal locality
 Spatial locality

 Common strategies
 Prefetch next k blocks together (typically > 64KB)
 Some discard unreferenced blocks
 Cluster blocks of the same directory and i-nodes if 

possible (to the same cylinder group and 
neighborhood) to make prefetching efficient
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How and What to Replace?
 Page replacement theory

 Use past to predict future
 LRU is good

 Buffer cache with LRU 
replacement mechanism
 If b is in buffer cache, 

move it to front and 
return b

 Otherwise, replace the 
tail block, get b from 
disk, insert b to the front

 Use double linked list 
with a hash table
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Which Write Policies?
 Write through

 Whenever modify cached 
block, write block to disk

 Cache is always 
consistent

 Simple, but cause more 
I/Os

 Write back
 When modifying a block, 

mark it as dirty & write 
to disk later

 Fast writes, absorbs 
writes, and enables 
batching

 So, what’s the problem?
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Write Back Complications
 Fundamental tension

 On crash, all modified data in cache is lost.
 The longer you postpone write backs, the faster 

you are but the worst the damage is on a crash
 When to write back

 When a block is evicted
 When a file is closed
 On an explicit flush
 When a time interval elapses (30 seconds in Unix)

 Issues
 These write back options have no guarantees
 A solution is consistent updates (later)
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File Recovery Tools
 Physical backup (dump) and recovery

 Dump disk blocks by blocks to a backup system
 Backup only changed blocks since the last 

backup as an incremental
 Recovery tool built accordingly

 Logical backup (dump) and recovery
 Traverse the logical structure from the root
 Selectively dump what you want to backup
 Verify logical structures as you backup
 Recovery tool selectively move files back

 Consistency check (e.g. fsck)
 Start from the root i-node
 Traverse the whole tree and mark reachable 

files
 Verify the logical structure
 Figure out what blocks are free
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What fsck does
 Get default list of file systems to check from /etc/fstab
 Inconsistencies checked:

 Blocks claimed by more than one i-node or the free map
 Blocks claimed by an i-node outside range of the filesystem
 Incorrect link counts
 Size checks (directory size etc)
 Bad i-node format
 Blocks not accounted anywhere
 Directory checks:

 File pointing to unallocated i-node;  I-node number out of range; . 
or .. Not first two entries of a directory or have wrong i-node 
number

 Super Block checks
 More blocks for i-nodes than are in the filesystem; Bad free block 

map format;  Total free block and/or free i-node count incorrect
 Put orphaned files and directories in lost+found directory
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Recovery from Disk Block Failures
 Boot block

 Create a utility to replace 
the boot block

 Use a flash memory to 
duplicate the boot block 
and kernel

 Super block
 If there is a duplicate, 

remake file system
 Free block data structure

 Search all reachable files 
from the root

 Unreachable blocks are 
free

 i-node blocks
 Indirect or data blocks
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Persistency and Crashes
 File system promise: 

Persistency
 File system will hold a file until 

its owner explicitly deletes it
 Why is this hard?

 A crash will destroy memory 
content

 Cache more ⇒ better 
performance

 Cache more ⇒ lose more on a 
crash

 A file operation often requires 
modifying multiple blocks, but 
the system can only atomically 
modify one at a time

 Systems can crash anytime
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What is a Crash?
 Crash is like a context 

switch
 Think about a file system 

as a thread before the 
context switch and another 
after the context switch

 Two threads read or write 
same shared state?

 Crash is like time travel
 Current volatile state lost; 

suddenly go back to old 
state

 Example: move a file
 Place it in a directory
 Delete it from old
 Crash happens and both 

directories have problems
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Approaches
 Throw everything away and start over

 Done for most things (e.g., make again)
 Reconstruction

 Figure out where you are and make the file system 
consistent and go from there

 Try to fix things after a crash (“fsck”)
 Make updates consistent

 Either new data or old data, but not garbage data
 Make multiple updates appear atomic

 Build arbitrary sized atomic units from smaller 
atomic ones

 Similar to how we built critical sections
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Consistent Updates: Bottom-Up Order
 The general approach is to use a “bottom up” order

 File data blocks, file i-node, directory file, directory i-
node, …

 What about file buffer cache?
 Write back all data blocks
 Update file i-node and write it to disk
 Update directory file and write it to disk
 Update directory i-node and write it to disk (if necessary)
 Continue until no directory update exists

 Does this solve the write back problem?
 Updates are consistent but leave garbage blocks around
 May need to run fsck to clean up once a while
 Ideal approach: consistent update without leaving 

garbage
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Operations as transactions in FileSys
 Make a file operation a transaction

 Create a file
 Move a file
 Write a chunk of data
 …

 Make arbitrary number of file operations a 
transaction
 Just keep logging but make sure that things are 

idempotent: making a very long transaction
 Recovery by replaying the log and correct the file system
 This is called logging file system or journaling file system
 Almost all new file systems are journaling (Windows 

NTFS,  Veritas file system, file systems on Linux)
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Log Management
 How big is the log? Same size as the file system?
 Observation

 Log what’s needed for crash recovery
 Management method

 Checkpoint operation: flush the buffer cache to disk
 After a checkpoint, we can truncate log and start 

again
 Log needs to be big enough to hold changes in 

memory
 Some logging file systems log only metadata 

(file descriptors and directories) and not file data 
to keep log size down
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Log-structured File System (LFS)
 Structure the entire file system as a log with 

segments
 A segment has i-nodes, indirect blocks, and 

data blocks
 All writes are sequential (no seeks)
 There will be holes when deleting files
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Summary – Part 2
 File buffer cache

 True LRU is possible
 Simple write back is vulnerable to crashes

 Disk block failures and file system recovery 
tools
 Individual recovery tools
 Top down traversal tools

 Logging file systems
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