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First glance of MPI

• Vector of numbers X = [x1, x2, ..., xn]

• Heavy computations f (xi) ≈ 1 day

• Single machine:

t = tf (x1) + ...+ tf (xn) ≈ n days

Improve t using more machines?
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An introduction to MPI



What is MPI?

• Message Passing Interface

• It is a specification!
• MPICH

• OpenMPI

• and more!

• Parallel applications
• Physics

• Biology

• Maths

• Computer Science
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Shared Memory System
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Distributed Memory System
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MPI and SPMD

• Single Program Multiple Data

• Compile ONE program
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MPI and SPMD

• Each process does “something” different

• Conditional branching =⇒ SPMD
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Identifying MPI Processes

• Common practice ⇒ Non-negative integers

called ranks

• So for p processes we have 0, 1, ..., p − 1
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Input/Output in MPI



Output

demo • mpi dealing with io
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Run with 6 processes
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Inputs

• Most MPI implementations ⇒ only process 0

in MPI COMM WORLD access to stdin

• Process 0:
1. Read the data (scanf)

2. Send the data to the other process
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Compilation
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Execution
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Execution
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Recap

• Written in C

• Uses stdio.h, string.h, etc.

• Need to add mpi.h header file

• MPI identifiers start with “MPI ”

• First letter following underscore is uppercase
• Function names and types

• Avoid confusion
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MPI Components

• MPI Init
• Tell MPI to setup

• MPI Finalize
• Tell MPI to cleanup
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Basic Outline
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Point-to-point Communications



Communications: Communicators

• Communicators = a reference to processes

that can communicate together

• MPI Init create one for us!

• Called MPI COMM WORLD

• Contains in all the processes
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Communications: Communicators
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Communications: Send
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Communications: Datatypes

22



Communications: Receive
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Communications: Message Matching
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Our first communications

demo • mpi first com
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Communications: Receiving

A receiver can receive a message without knowing:

• Message size

• The sender ⇒ MPI ANY SOURCE

• The tag ⇒ MPI ANY TAG
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Communications: status p argument
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Communications: How much data?
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Communications: Any issues?

MPI Send and MPI Recv:

• MPI Recv always block

• MPI Send behave differently according to
buffer size

• Cutoffs/Blocking

• Depends of the implementation!

• Solution ⇒ Know your implementation!
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Safety in MPI programs



Notion of Safety in MPI programs

MPI Send behave in 2 ways:

• Buffering: copy the data in the send buffer

and return

• Blocking: block until a matching MPI Recv

call
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Notion of Safety in MPI programs

A threshold is used to switch from buffering to

blocking:

• Relatively small messages will be buffered by

MPI Send

• Larger messages will cause it to block
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Notion of Safety in MPI programs

• If every processes do a MPI Send ⇒ program

will hang or deadlock since MPI Recv not

reached

• Each process is blocked waiting for an event

that will never happen
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Notion of Safety in MPI programs

• A program is unsafe if it relies on MPI

buffering to work

• Works for various inputs

• Hang for others
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How to check if a program is safe ?

• Use MPI Ssend instead

• “s” ≡ synchronous

• Block until a matching MPI Recv
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How to make a program safe ?
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How to make a program safe ?

• Using MPI Sendrecv

• Scheduling handled by MPI

• Blocking send + receive

• dest and source can be equal

36



How to make a program safe ?
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Collective Communications



Scenario

• 8 processes

• Each one hold a number

• How to perform a global sum?

Idea:

• Send all the numbers to process 0

• Perform the sum

• Print the result

Problem =⇒ NOT FAIR/OPTIMIZED
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Tree-structured global sum
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Tree-structured global sum alternative

40



Our first collective communication

demo • mpi reduce
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Other reduction operators
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Collective vs

Point-To-Point Communications

In collective communications:

• All processes MUST call the SAME collective

function

• Example with 2 processes:
• p1: MPI Reduce()

• p2: MPI Recv()

• Processes will CRASH, HANG or ...
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Collective vs

Point-To-Point Communications

In collective communications:

• All arguments must BE COMPATIBLE

• Example with 2 processes:
• p1: MPI Reduce() with dest process=0

• p2: MPI Reduce() with dest process=1

• Processes will CRASH, HANG or ...
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Collective vs

Point-To-Point Communications

• output data p only used on dest process

• All of the processes still need to pass in an

actual argument corresponding to

output data p even if NULL.
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Collective vs

Point-To-Point Communications

• P2P communications are matched using:
• Communicators

• Tags

• Collective communications = NO TAGS!

• Collective communications are matched using:
• Communicators

• Call order! ⇒ All processes use the same collective

calls order
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MPI Allreduce

• What if the result should be available to all the

processes ?
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MPI Allreduce: Tree-structured
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MPI Allreduce: Tree-structured
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Broadcast

• One process send its data to all the others in a

communicator
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Broadcast Tree-Structured
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Data Distribution

x + y = (x0, x1, ..., xn−1) + (y0, y1, ..., yn−1)

= (x0 + y0, x1 + y1, ..., xn−1 + yn−1)

= (z0, z , ..., zn−1)

= z

How to implement a parallel vector sum?

52



Data Distribution: Serial Vector Sum

A serial version:

53



Data Distribution

• Block partitionning
• Assign blocks of consecutive components to each

process

• Cyclic partitioning
• Assign components in a round robin fashion

• Block-cyclic partitioning
• Use a cyclic distribution of blocks of components
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Data Distribution
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Data Distribution: Parallel Vector Sum
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Data Distribution: Scatter

MPI Scatter allows to read an entire vector on a

process and send the required components to

each process

57



Data Distribution: Parallel Vector Sum

demo • mpi vector addition
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Gather

MPI Gather allows from one process to collect

data of all the other processes
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Allgather

MPI Allgather allows to collect data from all the

processes on all the processes
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Allgather

• Concatenates the content of send buf p of

each process and stores it in each process

recv buf p

• recv count is the amount of data being

received from each process
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Matrix Vector Multiplication
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Matrix Vector Multiplication: Serial Loop
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Matrix Vector Multiplication: Matrix

0 1 2 3

4 5 6 7

8 9 10 11


Stored as contiguous memory location:

0 1 2 3 4 5 6 7 8 9 10 11
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Matrix Vector Multiplication:

Parallel Code

demo • mpi matrix vector multiplication
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Derived Datatypes



What are Derived Datatypes?

• Allows to represent any collection of data

items in memory by storing the types of

the items and their relative locations in

memory

• Allows MPI communication functions to

handle custom user types properly

• Works for both send and receive cases
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What are Derived Datatypes?

Derived Datatypes ≡ sequence of basics MPI types

Variable Address

x 24

y 40

z 48

{(MPI INTEGER,0),(MPI INTEGER,16),(MPI INTEGER,24)}
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MPI Type create struct

Builds a derived datatype that consists of individual

elements that have different basic types
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Steps to Create a Derived Datatype

1. Found the right MPI types (MPI DOUBLE,

MPI INT, ...)

2. Define their dimensions (usually 1)

3. Compute their relative displacement

4. Now ready to call MPI Type create struct

5. Commit your type using MPI Type commit

6. Use your type

7. FREE YOUR TYPE using MPI Type free
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How to compute displacement?

• Returns the address of the memory location

referenced by location p

• MPI Aint is a big enough type to store

addresses
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Derived Datatypes Example

demo • mpi derived types
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Performance Evaluation



Elapsed Parallel Time

Returns the number of seconds that have elapsed

since some time in the past
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Barriers

• Synchronize processes =⇒ use barriers

• It ensures that no process will return from

calling it until every process in the

communicator has started calling it
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Barriers: Back to Performance
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Conclusion



Takeaway messages

• MPI ≡ Message Passing Interface

• MPI uses SPMD

• Communicator = a reference to processes

that can communicate together

• Collective communications involve ALL

processes of a communicator

• To measure performance we use wall clock

time

• Program unsafe if correct behavior depends

on buffering of MPI Send

75


	An introduction to MPI
	Input/Output in MPI
	Point-to-point Communications
	Safety in MPI programs
	Collective Communications
	Derived Datatypes
	Performance Evaluation
	Conclusion

