
Based on the Peter Pacheto’s presentation

Parallel Programming with MPI

Loic Guegan loic.guegan@uit.no

September 1, 2022

UiT The Arctic University of Norway



First glance of MPI

• Vector of numbers X = [x1, x2, ..., xn]

• Heavy computations f (xi) ≈ 1 day

• Single machine:

t = tf (x1) + ...+ tf (xn) ≈ n days

Improve t using more machines?

1



First glance of MPI

• Vector of numbers X = [x1, x2, ..., xn]

• Heavy computations f (xi) ≈ 1 day

• Single machine:

t = tf (x1) + ...+ tf (xn) ≈ n days

Improve t using more machines?

1



First glance of MPI

2



First glance of MPI

2



Outline

An introduction to MPI

Input/Output in MPI

Point-to-point Communications

Safety in MPI programs

Collective Communications

Derived Datatypes

Performance Evaluation

Conclusion

3



An introduction to MPI



What is MPI?

• Message Passing Interface

• It is a specification!
• MPICH

• OpenMPI

• and more!

• Parallel applications
• Physics

• Biology

• Maths

• Computer Science

4



Shared Memory System

5



Distributed Memory System

6



MPI and SPMD

• Single Program Multiple Data

• Compile ONE program

7



MPI and SPMD

• Each process does “something” different

• Conditional branching =⇒ SPMD

8



Identifying MPI Processes

• Common practice ⇒ Non-negative integers

called ranks

• So for p processes we have 0, 1, ..., p − 1

9



Input/Output in MPI



Output

demo • mpi dealing with io

10



Run with 6 processes

11



Inputs

• Most MPI implementations ⇒ only process 0

in MPI COMM WORLD access to stdin

• Process 0:
1. Read the data (scanf)

2. Send the data to the other process

12



Compilation

13



Execution

14



Execution

15



Recap

• Written in C

• Uses stdio.h, string.h, etc.

• Need to add mpi.h header file

• MPI identifiers start with “MPI ”

• First letter following underscore is uppercase
• Function names and types

• Avoid confusion

16



MPI Components

• MPI Init
• Tell MPI to setup

• MPI Finalize
• Tell MPI to cleanup

17



Basic Outline

18



Point-to-point Communications



Communications: Communicators

• Communicators = a reference to processes

that can communicate together

• MPI Init create one for us!

• Called MPI COMM WORLD

• Contains in all the processes

19



Communications: Communicators

20



Communications: Send

21



Communications: Datatypes

22



Communications: Receive

23



Communications: Message Matching

24



Our first communications

demo • mpi first com

25



Communications: Receiving

A receiver can receive a message without knowing:

• Message size

• The sender ⇒ MPI ANY SOURCE

• The tag ⇒ MPI ANY TAG

26



Communications: status p argument

27



Communications: How much data?

28



Communications: Any issues?

MPI Send and MPI Recv:

• MPI Recv always block

• MPI Send behave differently according to
buffer size

• Cutoffs/Blocking

• Depends of the implementation!

• Solution ⇒ Know your implementation!

29



Safety in MPI programs



Notion of Safety in MPI programs

MPI Send behave in 2 ways:

• Buffering: copy the data in the send buffer

and return

• Blocking: block until a matching MPI Recv

call

30



Notion of Safety in MPI programs

A threshold is used to switch from buffering to

blocking:

• Relatively small messages will be buffered by

MPI Send

• Larger messages will cause it to block

31



Notion of Safety in MPI programs

• If every processes do a MPI Send ⇒ program

will hang or deadlock since MPI Recv not

reached

• Each process is blocked waiting for an event

that will never happen

32



Notion of Safety in MPI programs

• A program is unsafe if it relies on MPI

buffering to work

• Works for various inputs

• Hang for others

33



How to check if a program is safe ?

• Use MPI Ssend instead

• “s” ≡ synchronous

• Block until a matching MPI Recv

34



How to make a program safe ?

35



How to make a program safe ?

• Using MPI Sendrecv

• Scheduling handled by MPI

• Blocking send + receive

• dest and source can be equal

36



How to make a program safe ?

37



Collective Communications



Scenario

• 8 processes

• Each one hold a number

• How to perform a global sum?

Idea:

• Send all the numbers to process 0

• Perform the sum

• Print the result

Problem =⇒ NOT FAIR/OPTIMIZED

38



Tree-structured global sum

39



Tree-structured global sum alternative

40



Our first collective communication

demo • mpi reduce

41



Other reduction operators

42



Collective vs

Point-To-Point Communications

In collective communications:

• All processes MUST call the SAME collective

function

• Example with 2 processes:
• p1: MPI Reduce()

• p2: MPI Recv()

• Processes will CRASH, HANG or ...

43



Collective vs

Point-To-Point Communications

In collective communications:

• All arguments must BE COMPATIBLE

• Example with 2 processes:
• p1: MPI Reduce() with dest process=0

• p2: MPI Reduce() with dest process=1

• Processes will CRASH, HANG or ...

44



Collective vs

Point-To-Point Communications

• output data p only used on dest process

• All of the processes still need to pass in an

actual argument corresponding to

output data p even if NULL.

45



Collective vs

Point-To-Point Communications

• P2P communications are matched using:
• Communicators

• Tags

• Collective communications = NO TAGS!

• Collective communications are matched using:
• Communicators

• Call order! ⇒ All processes use the same collective

calls order

46



MPI Allreduce

• What if the result should be available to all the

processes ?

47



MPI Allreduce: Tree-structured

48



MPI Allreduce: Tree-structured

49



Broadcast

• One process send its data to all the others in a

communicator

50



Broadcast Tree-Structured

51



Data Distribution

x + y = (x0, x1, ..., xn−1) + (y0, y1, ..., yn−1)

= (x0 + y0, x1 + y1, ..., xn−1 + yn−1)

= (z0, z , ..., zn−1)

= z

How to implement a parallel vector sum?

52



Data Distribution: Serial Vector Sum

A serial version:

53



Data Distribution

• Block partitionning
• Assign blocks of consecutive components to each

process

• Cyclic partitioning
• Assign components in a round robin fashion

• Block-cyclic partitioning
• Use a cyclic distribution of blocks of components

54



Data Distribution

55



Data Distribution: Parallel Vector Sum

56



Data Distribution: Scatter

MPI Scatter allows to read an entire vector on a

process and send the required components to

each process

57



Data Distribution: Parallel Vector Sum

demo • mpi vector addition

58



Gather

MPI Gather allows from one process to collect

data of all the other processes

59



Allgather

MPI Allgather allows to collect data from all the

processes on all the processes

60



Allgather

• Concatenates the content of send buf p of

each process and stores it in each process

recv buf p

• recv count is the amount of data being

received from each process

61



Matrix Vector Multiplication

62



Matrix Vector Multiplication: Serial Loop

63



Matrix Vector Multiplication: Matrix

0 1 2 3

4 5 6 7

8 9 10 11


Stored as contiguous memory location:

0 1 2 3 4 5 6 7 8 9 10 11

64



Matrix Vector Multiplication:

Parallel Code

demo • mpi matrix vector multiplication

65



Derived Datatypes



What are Derived Datatypes?

• Allows to represent any collection of data

items in memory by storing the types of

the items and their relative locations in

memory

• Allows MPI communication functions to

handle custom user types properly

• Works for both send and receive cases

66



What are Derived Datatypes?

Derived Datatypes ≡ sequence of basics MPI types

Variable Address

x 24

y 40

z 48

{(MPI INTEGER,0),(MPI INTEGER,16),(MPI INTEGER,24)}

67



MPI Type create struct

Builds a derived datatype that consists of individual

elements that have different basic types

68



Steps to Create a Derived Datatype

1. Found the right MPI types (MPI DOUBLE,

MPI INT, ...)

2. Define their dimensions (usually 1)

3. Compute their relative displacement

4. Now ready to call MPI Type create struct

5. Commit your type using MPI Type commit

6. Use your type

7. FREE YOUR TYPE using MPI Type free

69



How to compute displacement?

• Returns the address of the memory location

referenced by location p

• MPI Aint is a big enough type to store

addresses

70



Derived Datatypes Example

demo • mpi derived types

71



Performance Evaluation



Elapsed Parallel Time

Returns the number of seconds that have elapsed

since some time in the past

72



Barriers

• Synchronize processes =⇒ use barriers

• It ensures that no process will return from

calling it until every process in the

communicator has started calling it

73



Barriers: Back to Performance

74



Conclusion



Takeaway messages

• MPI ≡ Message Passing Interface

• MPI uses SPMD

• Communicator = a reference to processes

that can communicate together

• Collective communications involve ALL

processes of a communicator

• To measure performance we use wall clock

time

• Program unsafe if correct behavior depends

on buffering of MPI Send

75


	An introduction to MPI
	Input/Output in MPI
	Point-to-point Communications
	Safety in MPI programs
	Collective Communications
	Derived Datatypes
	Performance Evaluation
	Conclusion

