Validation of ESDS Using Epidemic-Based Data
Dissemination Algorithms

Loic Guegan®, Issam Rais*, Otto Anshus®,
Department of Computer Science, UiT The Arctic University of Norway, Tromso, Norway*
Corresponding authors: loic.guegan @uit.no, issam.rais @uit.no

Abstract—The study of Distributed Systems (DS) is impor-
tant as novel solutions in this area impact many sub-fields
of Computer Science. Although, studying DS is not an easy
task. A common approach is to deploy a test-bed to perform
a precise evaluation of the system. This can be costly and
time consuming for large scale platforms. Another solution is
to perform network simulations, allowing for more flexibility
and simplicity. Simulators implement various models such as
wired/wireless network models and power consumption models.

Extensible Simulator for Distributed Systems (ESDS) is a
simulator designed for simulation of systems that include edge
platforms, namely Internet of Things (IoT), Wireless Sensor
Networks (WSN) and Cyber-Physical Systems (CPS). ESDS uses
coarse-grained (flow-level) models for wired and wireless net-
works, and provides nodes power consumption models. However,
to ensure accurate predictions, these models must be validated.

In this paper, we propose to validate the flow-level wire-
less model and the power consumption model of ESDS using
epidemic-based data dissemination simulations. We show that
ESDS has similar predictions than another validated flow-level
network simulator, in terms of network performance and energy
consumption.

Index Terms—network simulation, distributed systems, data
dissemination, Internet of Things, Wireless Sensors Networks,
Cyber-Physical Systems, Energy Consumption

I. INTRODUCTION

Distributed Systems (DS) consist in the combination of
distributed computers that communicates through a distributed
network. The nature of the distributed network varies across
applications. It can be wired (Cloud Computing, High Per-
formance Computing etc.), wireless (WSN, IoT, CPS etc.) or
both. With the popularization of WSN and IoT technologies,
research on DS based on wireless and heterogeneous (wired
and wireless) networks is crucial and targets many applica-
tions such as energy efficiency [1], node clustering [2f, data
dissemination [3]], monitoring [4] |5 |6] etc.

Depending on the use-case, setting up such platforms can
be difficult. As an example, monitoring the Arctic Tundra
has been a critical need for the COAT initiative [7]]. In [8]],
authors investigate an update system for mostly sleeping CPS
nodes in the context of the monitoring of the AT. This
type of work could greatly benefit from using simulation.
However in this context, having access to the real environment
and conducting real node deployments is time consuming
and costly. Depending on the studies, performing real node
deployment is not always required and many solutions can
be studied through emulation [9] or simulations [[10, [I1]. It
allows researchers to save time and potentially money.

Emulation replicates the entire deployment environment
which includes software (SW) and hardware (HW). However,
achieving emulation is difficult in scenarios with high variabil-
ity in SW and HW. Performing experiments with exotic HW
is not always possible with emulation.

To work around these issues, researchers can rely on net-
work simulations. Compared to real deployments, simulation
provides more flexibility. Researchers are then not limited by
the physical platform. In addition, simulation allows for more
exhaustive studies compared to real deployments and achieve
better reproducibility compared to emulation [9]. However, to
ensure that results from simulations are reliable and usable,
their models must be validated.

In this paper, we propose a first set of validation experiment
for the Extensible Simulator for Distributed Systems (ESDS).
The aim is to provide validated models that are usable for
research purposes. This validation targets the ESDS’s event
scheduler, its wireless communications performance model
and its node power consumption model. To conduct this
validation, an implementation of two epidemic-based data
dissemination algorithms is studied through ESDS. A compar-
ison between the results obtained with ESDS and a validated
simulator from the literature is performed. We also show that
simulation permits a fine grain analysis and comparison of
dissemination algorithms.

This paper is organized as follows. Section [[I] presents the
state of the art of existing validation methods for network
simulators and motivate the work. Section presents the
overall architecture of ESDS. Section [[V] details the validation
process that is used to validation our simulator. Section
and presents the validation results for the PF and SIR
algorithms. Section discuss about the overall results.
Finally, Section concludes the work.

II. RELATED WORK
A. Validation methods

In the literature, the first validation method consists in
reproducing the simulated platform and scenarios by deploying
real nodes [12] where relevant data concerning the behavior
of the system is collected. Obtained results are compared
with results from simulation of the system. This approach
compares the ground-truth to the simulated-truth. It assesses
how accurate the simulator is. However, it requires access to
a test-bed of nodes. Such a test-bed may not be available
or be costly and time-consuming to set-up. In [13} |14f], the

authors validate the ns-3 implementation of TCP congestion
algorithms by using real experiment results. In [15], real
experiments are used to validate the performance and energy
consumption prediction models of Message Passing Interface
(MPI) applications available in SimGrid.

The second validation method uses an analytical model of
the system. This model can be used to produce data about
the system. The results obtained from the analytical model
are compared with results from the simulation. This approach
compares the analytical model-truth to the simulated-truth.
When the system is very simple, accurately reflecting its
behavior with an analytical model is simple. However, for
more complex systems, an analytical model can be difficult to
construct. In [16]], authors use an analytical model to validate
the 802.11ax OFDMA implementation of ns-3. In [[17]], authors
validate the LTE device-to-device model of ns-3 using an
analytical model.

The third validation method consists in reproducing the
simulations in another network simulator [[18]]. Results from
the non-validated simulator are compared with the results from
a validated simulator. This approach assumes that the reference
simulator has been validated accurately. This is a low-cost and
efficient way of documenting the accuracy of a simulator. In
[19], authors validate the wired network energy models of the
SimGrid simulator using the ECOFEN module of ns-3. In [20]],
the Wi-Fi model of ns-3 is used to validate a flow-level Wi-Fi
model implemented in SimGrid. In [21]] the authors validate
the 802.11 model of Komondor using ns-3.

B. Motivations

Despite being a critical need for scientific research, valida-
tion of network simulator models are not always performed
even though they are widely used in the literature [22].
To ensure accurate predictions of ESDS models, this work
propose to validate ESDS using the third approach: comparing
ESDS to another validated simulator.

The reference simulator used for the validation is Sim-
Grid [23[]. Such as ESDS, SimGrid provides similar network
models granularity (flow-level), and a node power consump-
tion model. SimGrid has been widely used and validated [24}
25]]. Consequently, it is a suitable simulator to use as reference.

III. SIMULATOR ARCHITECTURE AND DESIGN

The ESDS simulator comprises two major components: 1)
The Simulation Orchestrator (SO) 2) The Simulated Nodes
(SN).

The SO is the main component responsible for imple-
menting the main simulation loop. It initialises the network
(e.g bandwidths and latencies), collects and processes the
events (e.g communications, turn on/off nodes). First, the
SO instantiates the network platform (i.e description of the
network characteristics) defined by the user. Second, it binds
the SN implementations to each simulated nodes. It then
instantiates every SN and starts their concurrent executions.
Finally, the SO orchestrates SNs by means of synchronization

TABLE I
SIMULATED NODES API CALLS

Call Description

send () Send data

sendt () Send data with a timeout

receive () Wait for and fetch incoming data
receivet () Wait for and fetch incoming data with a timeout
wait () Wait for a specific amount of simulated time
wait_end() ‘Wait until the end of the simulation

log () Print a message in the SO standard output
read () Read in the SO current state

turn_on () Turn the node on

turn_off () Turn the node off

mechanisms. It collects and processes SN events, until no more
events are generated by the SNs.

The network platform comprises network interfaces defined
by two matrices: a latency matrix L and a bandwidth matrix
B. As in [26]], the duration 7. for communication ¢ from SN
i to SN j, containing n bytes of data can be defined as:

T, + L 5 (1)

_n
B)
Note that if B(i,j) =0, SN ¢ and SN j are considered out of

range. ESDS does not implement any network protocol such
as TCP. If specific communication protocols are required, they
can be implemented in the SN, as it is done in real networks. It
is up to the user of ESDS to provide such implementation, for
example through plugins (detailed later). This simple network
platform representation allows the user to have fine control
over data transmitted during communications.

A. Simulated Node (SN) API

As in most network simulators, ESDS provides a common
API for the implementation of each SN. In our case, this
API performs requests to the SO in order to generate and/or
consume events. The API follows existing communication
mechanisms from other network simulators. However, we
strive to keep it small, while being able to implement most DS
scenarios. This API is detailed on Table [} It comprises mech-
anisms to perform communications, changing nodes states (on
and off), simulation wait calls, accessing to the simulator state
and logging.

These API calls are meant to provide mechanisms to imple-
ment the vast majority of scenarios that are part of CPS, WSN
and IoT. Nevertheless, the user is in charge of implementing
the use-case specific features. If these features are meant to be
reused, they can be implemented in ESDS, as a SN plugins.

B. SN Plugins

Aside from the presented simulation API, additional features
may be required to study phenomena that are part of several
research experiments. The SN energy consumption is an
example of such feature. Since we want to keep the standard
API small, these additional features are implemented by means
of SN plugins. A SN plugin is a specific node feature that
is implemented only once and can be reused across several

nodes and experiments. The user can extend the features of
ESDS by creating its own plugins and use them in the SN
implementations.

Currently, ESDS provides a plugin that model the node
energy consumption. It is based on the power state model [27]].
This approach consists in approximating the energy consump-
tion of a node based on the hypothesis that a node passes
throughout several discrete power states during its up-time.
Hence, a fixed power value is assigned to each state. The
power state plugin of ESDS allows the user to define an
arbitrary number of power states. Each SN switches between
its available power states according to the implementation
defined by the user. To account for the energy consumed by
the network interfaces, power state values can be attached to
communication interfaces. The plugin currently defines three
power states per interface namely Pj, (transmission), P,
(reception) and P;gie.

In this section we presented the simulator architecture and
design, including its main features. To be accurate, the models
described above must be validated carefully. The next section
presents the approach followed for their validation.

IV. VALIDATION PROTOCOL
A. Scenarios

The core of a discrete-event network simulator comprises
an event scheduler [28] and a network model. During the
simulation of dense network scenarios, thousands of events
(e.g communications) can be generated. The event scheduler
is in charge of ordering, prioritizing and processing these
events. The network model is used to predict the commu-
nication duration. To ensure a correct event scheduling and
accurate communications duration predictions, it is important
to validate both the event scheduler and the network model.

Catching event scheduling and network performance errors
in predictions can be done by simulating scenarios with
cascading events that include communications. Data dissem-
ination [29| [30] is of interest in distributed systems and
can generate cascading events. Hence, we compare results
from SimGrid and ESDS by simulation of data dissemination
algorithms.

In [30], authors study epidemic-based data dissemination
using a WSN test-bed. They study two data dissemination
algorithms: Probabilistic Flooding (PF) and the Susceptible-
Infected-Recovered (SIR) model.

In a wireless context, PF data dissemination algorithm
works as follow: to disseminate data, an initiator node sends
a message to all its neighbors. To mitigate re-transmissions,
each neighbor forwards the message received from the initiator
node based on a probability ¢q. The smaller g is, the less likely
it is for a message to reach all nodes of the system. On the
other hand, a greater value of ¢ allows to reach more nodes
in the network, but leads to more re-transmissions.

In a wireless context, a SIR data dissemination algorithm
defines 3 node states. Susceptible: a node can be infected with
a probability 8 upon receiving a message. Infected: at each
unit of time ¢, the node forwards the message. Recovered: after

being infected, a node can be recovered at each e unit of time
with a probability .. Upon recovery, the node stops forwarding
the message. The Algorithm [I] details the implementation of a
SIR algorithm on a node starting in the Susceptible state. The
spread of the message is driven by the reproduction number
T = g, which determines the expected number of infections
generated by the first infected node. Hence, the message is
expected to spread when 7 > 1.

Algorithm 1 Susceptible-Infected-Recovered
Require: «, S5 € [0, 1]
Require: state € {susceptible,infected, recovered}
1: state < susceptible > Initiator node starts in the

in fected state
while state is not recovered do

2:

3 message < Receive()

4 if BernoulliTrial(3) then
5: state < infected
6
7
8
9

> Synchronous call

while state is infected do
Send(message)
if BernoulliTrial(c) then
: state < recovered
10: end if
11: end while
12: end if
13: end while

> Synchronous call

To perform the validation of the event scheduler and the
network performance model, PF and SIR algorithms are
implemented in ESDS and SimGrid. The PF implementa-
tion is combined with the power states plugin to perform
its validation. Note that the energy consumption study is
presented for PF only, due to a lack of space. Since the
simulated communications are wireless in our scenarios, only
the wireless model of ESDS is validated in this work.

B. Metrics

In our study of data dissemination algorithm, two important
network related metrics are considered (extracted and derived
from [30]): (1) The network coverage represents the proportion
of nodes in the network that received the message disseminated
by the initiator node. Lets define n, the number of nodes in a
platform and m, the number of nodes that actually received the
disseminated message (n > m). The network coverage is then
defined as C' = ™ < [0, 1]. (2) The number of transmissions
that occur during the data dissemination, noted [V, measures
the dissemination efficiency. Indeed, for an equal network
coverage and in a similar context (i.e each transmission has
the same characteristic and occurs in the same platform),
a dissemination algorithm with less transmissions should be
considered, to have a more efficient usage of the network.

The last metric used for the validation experiments is the
SN energy consumption, noted E,. It quantifies the energy
consumed by the nodes, and allows for comparison between
the power state models in SimGrid and ESDS.

TABLE II
SIMULATION PARAMETERS

Parameters Value

n 25

Description

Number of nodes

Piaie 0.4W 1311 Idle power consumption

Py 0.16W [31] Transmitting power consumption

Py 0.16W [31] Receiving power consumption

BW 50kbps [31] Bandwidth

L 0s |31 Latency

T 1000 Number of runs per scenario

Probabilistic Flooding

q {0.2,0.3,0.4,0.5,0.6} Forward probability
Susceptible-Infected-Recovered

Aq {0.6} « set 1

Az {0.5} a set 2

B, {0.2,0.4,0.5,0.55,0.6,0.65,0.7} 3 set 1

By {0.7,0.8} B set 2

(a, B) Ay x B1UAs x By Values of « (recovery probability)

and S (infection probability)

C. Simulation Parameters

The simulation parameters are reported in Table The
simulated platform is similar to the one used in [30]. Its
complete adjacency matrix, termed 7, is available in [32].
The platform consists of 25 nodes that communicate through
wireless technologies. To stay within plausible technologies
at the edge, we assume that all nodes communicate with a
bandwidth of 50kbps, similar to the performance of LoRa, as
detailed in [31]]. We also instantiate the power states model of
SimGrid and ESDS with values extracted from [31]].

Both network simulators, ESDS and SimGrid, are determin-
istic. That is, for the exact same inputs they produce the same
outputs. Each scenario is run with 1000 different seeds used
by a random number generator. It impacts the forward of the
message for both PF and SIR, and the modification of the state
for SIR (susceptible, infected or recovered). All in all, 700 000
simulations are carried out.

V. VALIDATION: PROBABILISTIC FLOODING
A. Network Coverage

Figure [I] presents the network coverage metric for PF as a
function of the initiator node and the forwarding probability q.
Note that ESDS and SimGrid provide the exact same results.
Hence, the results are overlapping in the figure.

Results for each initiator show a similar trend: the network
coverage increases linearly with the forward probability q.
However, depending on the initiator node, the impact of ¢
varies. A key factor for this observed variation is the node
degree of connectivity (or node degree), that corresponds to
the number of nodes directly reachable (i.e through a single
hop) from a given node. The network coverage is higher for
scenarios having initiator nodes with higher degrees, compared
to scenarios with lower degrees. One direct reason is that
initiator nodes with a high degree are able to cover a large
part of the network at the beginning of the simulation.

Scenarios with high initiator node degrees have lower stan-
dard deviations. This is clearly visible when comparing the
results for initiator nodes 8 and 22. For initiator nodes with a

low degree of connectivity (e.g node 8,9 and 10), the chance of
infecting all nodes is lower. However, if a single transmission
can reach a node having a high degree of connectivity (e.g
node 0 and 18), it significantly increases the network coverage,
leading to a higher standard deviation. For scenarios with
initiators having a high degree of connectivity, the opportunity
of improving the network coverage is lower since they already
perform well, leading to a lower standard deviation. Conse-
quently, starting the data dissemination with initiator nodes
having a high degree of connectivity consistently leads to high
network coverage.

Figure 2| presents the results for the number of transmissions
(Vi) when simulating PF. It shows a correlation between the
forward probability ¢ and the average number of transmission
Ny, which characterises PF. The greater g is, the higher Ny,
is. The lower the network coverage is, the more important it
is to have high value of ¢ for a sufficient network coverage.
It confirms the importance of the initiator node degree when
using PF. The standard deviations are not presented for
readability, however, they are exactly the same for ESDS and
Simgrid.

Simulation for SimGrid and ESDS provide the same results
for the network coverage and Ny, over all simulations. For
readability, Figure [I] and [2] present results for both simulators
without distinction, as there is a perfect overlap. This implies
that both simulators scheduled the same communication events
with similar network performance, providing the same out-
comes. Consequently, ESDS has the same prediction abilities
than SimGrid in terms of event scheduling and network
performance using PF.

B. Energy Consumption

Figure [3] presents the node energy consumption reported
by the power state plugin of ESDS using PF. The standard
deviations are not presented for readability, and they are
exactly the same for both simulators. Results from SimGrid
are not provided since they correspond to results from ESDS
with a constant offset of AE = 9.92 x 10 J. This offset is
due to SimGrid’s implementation of PF that follows a specific
communication schedule to avoid deadlocks as explained in
Section[MI] This leads to a larger simulated time (due to longer
idle times), corresponding to an energy overhead of AF.

These graphs show a correlation between energy consump-
tion F, and the initiator node degree. The higher the initiator
node degree is, the larger E,, is. As depicted on Figure [
nodes with high initiator degree transmit more and thus
consume more energy. In addition, larger values of ¢ lead to
higher network coverage and higher energy consumption.

Both simulators provide the same results for the E,, metric
in every simulated scenarios. Consequently, the power state
model of ESDS is validated against SimGrid.

VI. VALIDATION: SUSCEPTIBLE-INFECTED-RECOVERED

This section presents results from simulating the SIR algo-
rithm by ESDS and SimGrid.

ard probabiti®y @
0 60

For

40 S
20 30

Network coverage (%)

0.0

24 23 22 21

Q>>> Initiator
/ degree
1.0 12
0.8
0.6
0.4
0.2 1
17T T T T T T [] T T 1T 1T 1T T 1T 1T 1T 7 \

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Initiator node id

Fig. 1. ESDS results of the network coverage evaluation using PF as an average over 1000 runs. The results for each initiator node is shown. The vertical
bars provide insights on the standard deviation for each scenario over 1000 runs. The degree of connectivity with the neighbors of every initiator node is
highlighted with a color scale (red for low degree and green for high degree). Note that results for SimGrid and ESDS are overlapping since they are exactly

the same.

154

=
o
L

Average N

Initiator

degree
12

Network
coverage

0.75
0.50

0.25

20 30 40 50 60
Forward probability q

30 40 50 60
Forward probability q

Fig. 2. Results of the Ny, metric evaluation using PF. These results are the average over 1000 runs. Each curve is specific to one initiator node. The initiator
degree and network coverage are shown using color scales. Note that results for SimGrid and ESDS are overlapping since they are exactly the same.

Figure [] depicts the results for the network coverage simu-
lation of SIR. The initiator node and the reproduction number,
7 are the factors in the simulations. The degree of connectivity
of the initiator node is shown with a color scale (red for nodes
with a high degree and green for nodes with a low degree).

The network coverage results show that SIR data dissemina-
tion model is less impacted by the initiator node degree, com-
pared to PF, for a given reproduction number. The network
coverage is strongly affected only on extreme node degrees.
For example, node 9 has a degree of 1, leading to a lower
network coverage, even for large values of 7. Similar trends
are visible for other nodes with low degree of connectivity
(e.g nodes 8, 20 and 21).

Overall, the SIR data dissemination model offers more

network coverage than PF for this specific set of reproduction
number 7 and network platform. Most of the scenarios result
in a network coverage of more than 60%.

Figure [5] depicts results for the Ny, metric using the SIR
model. The standard deviations are not presented for readabil-
ity and are exactly the same for both simulators. As expected,
the initiator node degree has a limited impact on the number
of transmission that occurs during the simulation. Most curves
are close to be overlapping. Similarly, the reproduction number
7 has a limited impact on the network coverage. Compared to
PF, the SIR model leads to a greater value of N,, in average
(with a minimum of N, = 20). With the chosen values of 7,
SIR adds between 3 to 20 times the amount of transmissions

1020001

Esn ()

1010004

1000001

Initiator

degree
12

Network
coverage

0.75

0.50

0.25

Forward probability q

20 30 40 50 60
Forward probability q

Fig. 3. Evaluation of the network platform energy consumption in ESDS and its power states plugin using PF. These results are the average over 1000 runs.
Results for SimGrid are not provided since they correspond to the ESDS results with a constant offset of AE = 9.92 x 10° J that is due to the limitations

encounter in SimGrid for the scenario implementation.

<
<
‘p
&
o
IXs)
b°&

o 0
&
&

06

0.8
0.6

0.4

Network coverage (%)

0.2

Initiator
degree
12

0.0

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Initiator node id

Fig. 4. Results of the network coverage evaluation using SIR as an average over 1000 runs. Results for each initiator node is shown. The vertical bars provide
insights on the standard deviation for each scenario over 1000 runs. The degree of connectivity with the neighbors of every initiator node is highlighted with
a color scale (red for low degree and green for high degree). Note that results for SimGrid and ESDS are overlapping since they are exactly the same.

of PF. Consequently, most of the nodes in the network are
receiving the message spread by the sender, but at the cost of
more re-transmissions.

Simulations for SimGrid and ESDS provide the same re-
sults, over all simulations using the SIR model. For readability,
Figures [] and [5 present results for both simulators without
distinction, as there is a perfect overlap. Consequently, the
event scheduler and the network model of ESDS provide
similar predictions to SimGrid.

VII. DISCUSSION
A. Data dissemination

Simulation results reveal interesting properties of PF. First,
it is highly sensitive to the initiator nodes degree. Having a

fixed value of g can lead to an inefficient data dissemination, as
quantified by the network coverage and energy consumption.
This phenomenon might be more significant on dynamic
network platforms where the nodes degrees of connectivity
are not fixed due to their mobility and reachability. Still, PF is
able to cover a major part of the network platform (more than
75%), with relatively few data transmission in average (less
than 15). In addition, scenarios with an initiator node with
a high degree tend to increase the energy consumption from
q = 50 to ¢ = 60, but not necessarily improving the network
coverage by a significant amount. It suggests that g could be
adjusted according to the initiator node degree. A future work
can include a more energy efficient data dissemination.

50

N
o

Average Niy

w
=}

20+

Initiator
degree
12
9
6

3

Network

coverage
0.8
0.6

0.4

08 12 16
Reproduction number t

08 12 16
Reproduction number T

Fig. 5. Results of the Ny, metric evaluation using SIR. These results are the average over 1 000 runs. Each curve is specific to one initiator node. The initiator
degree and network coverage are shown using color scales. Note that results for SimGrid and ESDS are overlapping since they are exactly the same.

The simulation study of SIR data dissemination model
shows that, for a given set of reproduction number, SIR is
less sensible to the initiator node degree, compare to PF.
However, SIR has significantly higher Ny, values in average,
as it generates more transmissions.

B. Validation

As explained, two epidemic-based data dissemination al-
gorithms (PF and SIR) were implemented using ESDS and
SimGrid. For both of these algorithms, network coverage C'
and number of transmissions Ny, is studied. A comparison of
the power state implementation of ESDS against SimGrid is
performed on the PF algorithm. Setting up the power state
implementation of SimGrid to work with the SIR algorithm
was time consuming. Each scenario is run with 1000 seeds
resulting in 700000 simulations. Both simulators perform
the same, as quantified by the three presented metrics. With
the same inputs, they predict the same coverage, number
of transmissions and energy consumption in every cases.
Consequently, the wireless network model and the power state
model of ESDS is validated against SimGrid.

VIII. CONCLUSION

In this paper, we propose a first set of validation experiment
for the ESDS simulator. The event scheduler of ESDS, its
wireless network performance model and its power state model
are validated. We compare the simulation outcomes of ESDS
to another validated network simulator called SimGrid. The
simulated scenarios implement data dissemination algorithms,
that generate cascading events. The results show that ESDS
is able to provide the exact same predictions as SimGrid
for the various metrics presented in the paper. ESDS can be
reliably used to conduct energy consumption studies, as we
also provide a validation of the implementation of the power
state model. The validation experiments are entirely available
online [33]], along with the ESDS source code [34].

We show that ESDS is the proper tool to study topics
like data dissemination. Compared to a real deployment [30],
ESDS allows to vary additional parameters. Its results for PF
and SIR reveal that the initiator node degree has a major
impact on the data dissemination efficiency. They suggest
that further improvements in energy efficiency and network
communications performance are possible with PF and SIR.

Future works include an improvement of the validation of
ESDS by providing new dimensions of validation experiments.
In fact, this work do not cover the validation of its flow-
level wired network model. Since studying large scale DS
is important, evaluating ESDS in terms of scalability is also
required. Finally, we are planning to use ESDS to perform
various research studies on CPS, IoT and WSN.

REFERENCES

[1] Eljona Zanaj et al. “Energy Efficiency in Short and
Wide-Area IoT Technologies—A Survey”. In: Tech-
nologies 9.1 (Mar. 2021).

[2] Amin Shahraki et al. “Clustering Objectives in Wireless
Sensor Networks: A Survey and Research Direction
Analysis”. In: Computer Networks 180 (Oct. 2020).

[3] Issam Rais, Loic Guegan, and Otto Anshus. “Impact
of Loosely Coupled Data Dissemination Policies for
Resource Challenged Environments”. In: 2022 22nd
IEEE International Symposium on Cluster, Cloud and
Internet Computing (CCGrid). IEEE, May 2022.

[4] Brooke Potter et al. “Environmental Monitoring Using
a Drone-Enabled Wireless Sensor Network™. In: 2019
Systems and Information Engineering Design Sympo-
sium (SIEDS). IEEE, Apr. 2019.

[5] Rizky Pratama Hudhajanto et al. “Real-Time Monitor-
ing for Environmental Through Wireless Sensor Net-
work Technology”. In: 2018 International Conference
on Applied Engineering (ICAE). IEEE, Oct. 2018.

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

Issam Rais et al. “UAVs as a Leverage to Provide
Energy and Network for Cyber-Physical Observation
Units on the Arctic Tundra”. In: 2019 15th Interna-
tional Conference on Distributed Computing in Sensor
Systems (DCOSS). IEEE, May 2019.

Rolf A. Ims et al. Science Plan for COAT: Climate-
Ecological Observatory for Arctic Tundra. 2013.
Roberth Tollefsen and Otto Anshus. “Detecting the
Arrival of an Update at Mostly Sleeping Cyber-Physical
IoT Nodes”. In: 2022 18th International Conference
on Distributed Computing in Sensor Systems (DCOSS).
Marina del Rey, Los Angeles, CA, USA: IEEE, May
2022. (Visited on 04/17/2023).

Shrey Baheti, Shreyas Badiger, and Yogesh Simmhan.
“VIoLET: An Emulation Environment for Validating
IoT Deployments at Large Scales”. In: ACM Transac-
tions on Cyber-Physical Systems 5.3 (July 2021).
Lelio Campanile et al. “Computer Network Simulation
with Ns-3: A Systematic Literature Review”. In: Elec-
tronics 9.2 (Feb. 2020).

Adrien Gougeon et al. “Impact of Wired Telecommuni-
cation Network Latency on Demand-Side Management
in Smart Grids”. In: (2021).

Thanh-Hai To and Andrzej Duda. “Simulation of LoRa
in NS-3: Improving LoRa Performance with CSMA”.
In: 2018 IEEE International Conference on Communi-
cations (ICC). 1IEEE, May 2018.

Siddharth Gangadhar et al. “TCP Westwood(+) Protocol
Implementation in Ns-3”. In: ().

Mark Claypool, Jaec Won Chung, and Feng Li. “BBR’:
An Implementation of Bottleneck Bandwidth and
Round-Trip Time Congestion Control for Ns-3”. In:
Proceedings of the 10th Workshop on Ns-3 - WNS3 ’18.
ACM Press, 2018.

Franz Heinrich et al. “Predicting the Performance and
the Power Consumption of MPI Applications With
SimGrid”. In: ().

Davide Magrin et al. “Validation of the Ns-3 802.11ax
OFDMA Implementation”. In: Proceedings of the Work-
shop on Ns-3. Virtual Event USA: ACM, June 2021.
(Visited on 04/13/2023).

Richard Rouil et al. “Implementation and Validation of
an LTE D2D Model for Ns-3”. In: Proceedings of the
Workshop on Ns-3 - 2017 WNS3. Porto, Portugal: ACM
Press, 2017. (Visited on 04/13/2023).

Loic Guegan et al. “A Large-Scale Wired Network
Energy Model for Flow-Level Simulations”. In: Ad-
vanced Information Networking and Applications. Ed.
by Leonard Barolli et al. Vol. 926. Springer Interna-
tional Publishing, 2020.

Loic Guegan et al. “A Large-Scale Wired Network
Energy Model for Flow-Level Simulations”. In: (2019).
Clément Courageux-Sudan et al. “A Flow-Level Wi-Fi
Model for Large Scale Network Simulation”. In: (2022).
Sergio Barrachina-Munoz et al. “Komondor: A Wireless
Network Simulator for Next-Generation High-Density

[29]

[31]

[32]

WLANSs”. In: 2019 Wireless Days (WD). 1IEEE, Apr.
2019.

Pedro Velho et al. “On the Validity of Flow-Level Tcp
Network Models for Grid and Cloud Simulations”. In:
ACM Transactions on Modeling and Computer Simula-
tion 23.4 (Oct. 2013). (Visited on 01/18/2019).

Martin Quinson, Cristian Rosa, and Christophe Thiéry.
“Parallel Simulation of Peer-to-Peer Systems”. In:
IEEE, May 2012.

Kayo Fujiwara and Henri Casanova. “Speed and Ac-
curacy of Network Simulation in the SimGrid Frame-
work”. In: Proceedings of the 2nd International ICST
Conference on Performance Evaluation Methodologies
and Tools. ICST, 2007.

Franz Christian Heinrich et al. “Predicting the Energy-
Consumption of MPI Applications at Scale Using Only
a Single Node”. In: IEEE, Sept. 2017.

Pedro Velho and Arnaud Legrand. “Accuracy Study and
Improvement of Network Simulation in the SimGrid
Framework”. In: Proceedings of the Second Interna-
tional ICST Conference on Simulation Tools and Tech-
niques. ICST, 2009.

He Wu, Sidharth Nabar, and Radha Poovendran. “An
Energy Framework for the Network Simulator 3 (Ns-
3)’. In: Proceedings of the 4th International ICST
Conference on Simulation Tools and Techniques. ACM,
2011.

Thomas J. Schriber and Daniel T. Brunner. “How
Discrete-Event Simulation Software Works”. In: Hand-
book of Simulation. Ed. by Jerry Banks. John Wiley &
Sons, Inc., Aug. 1998.

Umesh Bodkhe and Sudeep Tanwar. “Secure Data Dis-
semination Techniques for IoT Applications: Research
Challenges and Opportunities”. In: Software: Practice
and Experience 51.12 (Dec. 2021).

Andreana Stylidou et al. “Evaluation of Epidemic-
Based Information Dissemination in a Wireless Net-
work Testbed”. In: Technologies 8.3 (June 2020).
Issam Rais, Loic Guegan, and Otto Anshus. “Impact
of Loosely Coupled Data Dissemination Policies for
Resource Challenged Environments”. In: ().

Aikaterini Georgia Alvanou et al. “CaBIUs: Description
of the Enhanced Wireless Campus Testbed of the Ionian
University”. In: Electronics 9.3 (Mar. 2020).

Guegan Loic. ESDS - Wireless Validation Experiments.
https : // gitlab . com / manzerbredes / esds - validation -
wireless.

Guegan Loic. ESDS - Extensible Simulator for Dis-
tributed Systems. |https://gitlab.com/manzerbredes/esds.

https://gitlab.com/manzerbredes/esds-validation-wireless
https://gitlab.com/manzerbredes/esds-validation-wireless
https://gitlab.com/manzerbredes/esds

	Introduction
	Related Work
	Validation methods
	Motivations

	Simulator architecture and design
	Simulated Node (SN) API
	SN Plugins

	Validation Protocol
	Scenarios
	Metrics
	Simulation Parameters

	Validation: Probabilistic Flooding
	Network Coverage
	Energy Consumption

	Validation: Susceptible-Infected-Recovered
	Discussion
	Data dissemination
	Validation

	Conclusion

